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Objectives: To learn 

 

 Numerical methods for solving ordinary differential equations. 

 The properties of Laplace Transform, Inverse Laplace Transform and Convolution 

theorem. 

 Differentiation and integration of complex valued functions. Evaluation of integrals 
using Cauchy’s integral formula. 

 Taylor’s series, and Laurent’s series expansions of complex functions, evaluation of 

integrals using residue theorem. 

 Transform a given function from z - plane to w – plane. Identify the transformations 

like translation, magnification, rotation, reflection, inversion, and Properties of bilinear 

transformations. 
 

UNIT – I: Numerical Methods 

Definition of Interpolation,Finding root by Iterative method, Solving first order ODE by 

Picards method,Taylors series method for solving second order ODE,Runge-Kutta method for 

solving second order ODE and Numerical Differentiation. 

UNIT -II: Laplace Transforms 

Definition of Laplace transform, domain of the function and Kernel for the Laplace transforms, 

Existence of Laplace transform, Laplace transform of standard functions, first shifting 

Theorem, Laplace transform of functions when they are multiplied or divided by “t”, Laplace 

transforms of derivatives and integrals of functions, Unit step function, Periodic function. 

Inverse Laplace transform by Partial fractions, Inverse Laplace transforms of functions when 

they are multiplied or divided by ”s”, Inverse Laplace Transforms of derivatives and integrals 

of functions, Convolution theorem.Solving ordinary differential equations by Laplace 

transforms. 

 

UNIT – III: Analytic functions 

 

Complex functions and its representation on Argand plane, Concepts of limit,continuity, 

differentiability, Analyticity, and Cauchy-Riemann conditions, Harmonic functions – Milne – 

Thompson method. Line integral – Evaluation along a path and by indefinite integration – 

Cauchy’s integral theorem (singly and multiply connected regions) – Cauchy’s integral formula 

– Generalized integral formula. 



UNIT – IV: Singularities and Residues 

 

Radius of convergence – Expansion in Taylor’s series, Laurent series. Singular point – Isolated 

singular point – pole of order m – essential singularity. Residue – Evaluation of residue by 

formula and by Laurent series – Residue theorem. Evaluation of integrals of the type 

(a) Improper real integrals   (b)  

UNIT – V: Conformal Mappings 

 

Conformal mapping: Transformation of z-plane to w-plane by a function, Conformal 

transformation. Standard transformations- Translation; Magnification and rotation; inversion 

and reflection, Transformations like ez , log z, z2, and Bilinear transformation. Properties of 

Bilinear transformation, determination of bilinear transformation when mappings of 3 points 

are given (cross ratio). 

 

 
 

TEXT BOOKS: 

 

i) Higher Engineering Mathematics by B.S. Grewal, Khanna Publishers. 

ii) Higher Engineering Mathematics by Ramana B.V, Tata McGraw Hill. 

iii) Complex Variables : Theory and Applications by H.S Kasana. 

 

 

REFERENCES: 

 
i) Complex Variables by Murray Spiegel,Seymour Lipschutz, et al. by Schaum’s outlines 

series. 

 

iii) Advanced Engineering Mathematics by Kreyszig, John Wiley & Sons. 

iii) Advnced Engineering Mathematics by Michael Greenberg –Pearson publishers. 

 

 

 

Course Outcomes: After going through this course the students will be able to 

1. Understand the Numerical differentiation and able to solve the second order ODE by 

Numerical methods. 

2. Solve differential equations with initial conditions using Laplace Transformation. 

3. Analyze the complex functions with reference to their analyticity and integration 
using Cauchy’s integral theorem. 

4. Find the Taylor’s and Laurent series expansion of complex functions and solution of 

improper integrals can be obtained by Cauchy’s-Residue theorem. 

5. Understand the conformal transformations of complex functions can be dealt with 
ease. 
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UNIT-I 

NUMERICAL METHODS 



2  

 
 

INTRODUCTION-INTERPOLATION 

Using mathematical modeling, most of the problems in engg and physical and 

economical sciences can be formulated in terms of systems of linear or non linear equations, 

ordinary or partial differential equations or Integra equations. In majority of the cases, the 

solutions to these problems in analytical form are non-existent or difficult or not amenable 

for direct interpretation. In all such problems, numerical analysis provides approximate 

solutions practical and amenable for analysis. Numerical analysis does not strive for 

exaxtness.instaed.it yields approximations with specified degree of accuracy. The early 

disadvantages of the several numbers of computations involved has been removed through 

high speed computation using computers, giving results which are accurate, reliable and 

fast. Numerical is not only a science but also an ‘art’ because the choice of ‘appropriate’ 

procedure which ‘best’ suits to a given problem yields ‘good’ solutions. 

 

 
Approximations curve is the graph of data obtained through measurement of 

observation. Curve fitting is the process of finding the “best fit” curve since different 

approximation curves can be obtained for the same data. Least squares method is the best 

curve fitting by a sum of exponentials, linear weighted and non-linear weighted least 

squares approximation. 
 

 

 
 

Definition: 

 
If we consider the statement 

 

y  f x; x0  x  xn 

 

 
we understand that we can find the 

value of 𝑦, corresponding to every value of 𝑥 in the range x0  x  xn . If the function f  x is 

single valued and continuous and is known explicitly then the values of f  x for certain values 

 

of 𝑥 like 

values 

x0, x1, ......... xn can be calculated. The problem now is if we are given the set of tabular 

 

𝑥 ∶ 𝑥0 𝑥1 𝑥2 …………… 𝑥𝑛 



3 

 

𝑦 ∶ 𝑦0 𝑦1 𝑦2 ……………. 𝑦𝑛 
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Satisfying the relation y  f  x and the explicit definition of f  x is not known, it is 

possible to find a simple function say 𝜙(𝑥) such that f  x and   x agree at the set of 

tabulated points. This process to finding   x is called interpolation. If   x is a polynomial 

then the process is called polynomial interpolation and   x is called interpolating polynomial. 

In our study we are concerned with polynomial interpolation 
 

 

 
Let 

 

x0 , x1  xn 

 

 
be the values 𝑥 and 

OR 

 
y , y , y ,   , y 

 

 
be the values of 𝑦 and 𝑦 = 𝑓(𝑥) 

0 1 2 n 

be a unknown function .The process to find the value of the unknown function 𝑦 = 𝑓(𝑥) when 

the given value of 𝑥 and the value of 𝑥 lies within the limits x0 to xn is called interpolation 

 

ITERATION METHOD: 
 

Consider an equation f(x)=0 , which can taken in the form x =φ(x) ,where φ(x) satisfies the 

following conditions: 

(i) for two real numbers a and b ,a ≤ x ≤ b and 

(ii) for all x’ and x” lying in the interval (a,b),we have|φ’(x) < 1| ,for all x. 

procedure: 

put x1 =φ(x0 ) and take x1 as the first approximation of α .where α has a unique root in 

the interval (a,b). 

next we put x2 =φ(x2) and take x2 as the second approximation of α. Continuing the process 

,we get the third approximation x3 ,the fourth approximation x4 and so on. 
 

The nth approximation is given by xn =φ(xn-1) ,n≥1. Is called an iterative formula. 

In this process of finding successive approximations of the root α ,an approximation of α is 

obtained by substituting the preceding approximation in the function φ(x) which is known .such 

a process is called an iteration process.the nth approximation xn is called the nth iterate. 

A formula xn =φ(xn-1),n≥1 is called an iterative formula. 
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Example:1 
 

By the fixed point iteration process, find the root correct to 3-decial places, of the equation 

x=cosx, near x=π/4. 

Sol:The given equation is of the form x=φ(x),where φ(x)=cosx. |𝜑′(𝑥)| = |𝑠𝑖𝑛𝑥| < 1 ,for all x. 
 

Hence,the iteration process xn =φ(xn-1) is convergent in every interval .since the root is required 

near π/4 ,we take the initial approximation of the root as x0=π/4 =0.7853. 

Then ,by iteration formula xn=φ(xn-1), 
 

x1=φ(x0)=cos(π/4)=0.7071 , 

x2=φ(x1)=cos(x1) =0.7602 , 

x3=cosx2=0.7246 , 

x4 =cosx3=0.7487 , 

x5=cosx4 =0.7325 , 

x6=cosx5=0.7434 , 

x7=cosx6=0.7361 . 

by observing these iterations ,we conclude the approximation as 0.739 for the required root . 
 

Example:2 
 

By the single point iteration method, find the root of the equation x3-2x—5=0 which lies near 

x=2. 

Sol: Given equation is x3-2x-5=0, x3=2x+5, x=(2x+5)1/3 

 
This is of the form x=φ(x), φ’(x)= 2  

3(2𝑥+5)2/3 

 
 

 
We observe that |φ’(x)|<1 for 2<x<3. 

Hence the iteration for φ(x) near x=2 converges.LetS us take the initial approximation for the 

root as x0=2. 

X1=φ(x0)=(2*2+5)1/3=91/3=2.08008, x2=2.09235, 

X3=2.09422, x4=2.09450, x5=2.09454, x6=2.09455, x7=2.09455 
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Since x6 and x7 are identical upto 5 decimal places,we take x7=2.09455 as the required root, 

correct to 5 places of decimals. 

 

 
Example:3 

Find the positive root of x4-x-10=0 by iteration. 

Sol: Given equation can be written as x=φ(x) in many ways such as 
 

X=x4-10, x=10/x3-1, x=(x+10)1/4, only x=(x+10)1/4 satisfies the converge criteria 

|φ’(x)<1|. 
 

So we take iteration formula as xi+1=(xi+10)1/4,i=0,1,2…. 

We observe f(1)<0, f(2)>0 from the given equation. 

Hence the root lies between 1 and2. 

Choosing x0=
1+2

=1.5, we get x1=(1.5+10)1/4=1.8415, x2=1.8550, x3=1.8556,X4=1.8556 
2 

 

Hence the root is 1.8556 correct to four decimal places. 

 

 

PICARDS METHOD OF SUCCESSIVE APPROXIMATIONS 

Picard method is an iterative method. An iterative method gives a sequence of approximations 

𝑦(1)(𝑥), 𝑦(2)(𝑥) − − − − − 𝑦(𝑛)(𝑥), to the solution of differential equations such that the nth 

approximation is obtained from one or more previous approximations. 
 

Consider the differential equation 𝑑𝑦 = 𝑓(𝑥, 𝑦) with initial condition 𝑦(𝑥 
𝑑𝑥 

 

Approximation is given by the following formulae 

) = 𝑦0 then Picards 

 

𝑥 

𝑦𝑛(𝑥) = 𝑦0 + ∫ 𝑓(𝑥, 𝑦𝑛−1)𝑑𝑥 
𝑥0 

 
𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2,3 

 

Prob1 : Find the value of y fo x=0.4 by Picards method, given that 𝑑𝑦 =, 𝑦(0) = 0 
𝑑𝑥 

 

Sol: Given (𝑥, 𝑦) = 𝑥2 + 𝑦2 ,𝑥0 = 0, 𝑦0 = 0 

From Picards method we have 

0 
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𝑥 

𝑦(𝑛)(𝑥) = 𝑦0 + ∫ 𝑓(𝑥, 𝑦𝑛−1)𝑑𝑥 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2,3 … .. 
𝑥0 

 

3 Now first approximation given by 𝑦(1)(𝑥) = 
𝑥
(𝑥2)𝑑𝑥 = 

𝑥
 ∫0 

 
Second approximation is given by 𝑦(2)(𝑥) = 

𝑥 2
 

3 

 
𝑥3   

2
 

 
 

 
𝑥3 

+ 
𝑥7 

 
  

∫0 
(𝑥 

Hence we take 𝑦(2)(𝑥) is approximation for 𝑦(𝑥) 

+ ( ) 
3 

) 𝑑𝑥 = 
3 63 

 

𝑥 

∴ 𝑦(𝑥) ≈ 𝑦(2)(𝑥) = ∫  (𝑥2 + ( 
0 

𝑥3 

3 

 
)2) 𝑑𝑥 = 

𝑥3 
 

 

3 

𝑥7 

+ 
63 

 

 

∴ 𝑦(0.4) = 
0.43 

 
 

3 

0.47 
+ 

63 

 
= 0.0214 

 
 

TAYLOR SERIES METHOD FOR SECOND ORDER DIFFERENTIAL EQUATION: 
 

Consider a second order differential equation 
 

𝑦ˈˈ = 
𝑑2𝑦 

= 𝑓(𝑥, 𝑦, 𝑦ˈ), 𝑦(𝑥 
 

) = 𝑦 , 𝑦1(𝑥 ) = 𝑦 1 ----------------------------- (1) 

𝑑𝑥2 0 0 0 0 

 

Put 𝑑𝑦 = 𝑧, 𝑧1 = 
𝑑𝑧 

= 𝑓(𝑥, 𝑦, 𝑧)-------------------------------------- (2) 
𝑑𝑥 𝑑𝑥 

 

with𝑦(𝑥0) = 𝑦0 --------------------- (3) 

𝑧(𝑥0) = 𝑧0 = 𝑦01-------------------- (4) 

 
By Taylors series method 

 

2 
𝑧   = 𝑧 + ℎ𝑧 1 + 

ℎ   
𝑧 11 + − − − − −, 𝑤ℎ𝑒𝑟𝑒 𝑧 

 

= 𝑧(𝑥 ) 𝑎𝑛𝑑 𝑥 − 𝑥 = ℎ---(5) 

1 0 0 2!    0 

ℎ2 

1 1 1 0 

𝑦1 = 𝑦0 + ℎ𝑦01 + 𝑦011 + − − − − −, 
2! 

 
𝑦   = 𝑦 + ℎ𝑧 + 

ℎ2 

𝑧 1 + − − − − −, ------------------(6) 
 

1 0 0 



8 

 

2!    0 
 

Equation (2) gives 𝑧ˈ and differentiating it, we get 𝑧ˈˈ, 𝑧ˈˈˈ, … … … Hence 𝑧0ˈ, 𝑧0ˈˈ, …. Can be 

obtained and using (6) and (5) we can get 𝑦1and 𝑧1. From 𝑦1and 𝑧1, get 𝑧1ˈ, 𝑧1ˈˈ, …. At (𝑥1, 𝑦1). 
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0 

2 
Again using 𝑧   = 𝑧 + ℎ𝑧 1 + 

ℎ   
𝑧 11 + − − − − −, we get 𝑧 

 

and using 

2 1 1 2!    1 2 

 

2 
𝑦 = 𝑦 + ℎ𝑦 1 + 

ℎ   
𝑦 11 + − − − − −,we get 𝑦 . 

 

2 1 1 2!     1 2 

 

Example1: Evaluate 𝒚(𝟏. 𝟏) 𝒂𝒏𝒅 𝒚(𝟏. 𝟐) from𝒅
𝟐𝒚 

+ 𝒚𝟐 
𝒅𝒚 

= 𝒙𝟑, 𝒚(𝟏) = 𝟏, 𝒚ˈ(𝟏) = 𝟏, by 

using Taylor series method. 

𝒅𝒙𝟐 𝒅𝒙 

 

Solution: Given 𝒅
𝟐𝒚 

+ 𝒚𝟐 
𝒅𝒚 

= 𝒙𝟑 ---------------------------------- (1) 
𝒅𝒙𝟐 𝒅𝒙 

 

Put 𝑦ˈ = 𝑧, (1) becomes 𝑧ˈ + 𝑦2𝑧 = 𝑥3 ⇒ 𝑧ˈ = 𝑥3 − 𝑦2𝑧 -------- (2) 

𝑦0 = 𝑦(1) = 1and𝑧0 = 1 and 𝑥0 = 1 − − − − ----------------- (3) 
 

2 
Here 𝑧   = 𝑧   + ℎ𝑧 1 + 

ℎ   
𝑧 11 + − − − − − ----------------------- (4) 

 

1 0 0 2!     0 

 

From (2), we have 𝑧ˈˈ = 3𝑥2 − 𝑦2𝑧ˈ − 2𝑦𝑦ˈ𝑧 and 𝑦11 = 𝑧1 
 

𝑧111 = 6𝑥 − 𝑦2𝑧11 − 2𝑦𝑦1𝑧1 − 2 [𝑦𝑧𝑦11 + 𝑦12
𝑧 + 𝑦𝑦1𝑧1]and𝑦111 = 𝑧11 

 

𝑧01 = 1 − 1 = 0,  𝑧011 = 3𝑥02 − 𝑦02𝑧0ˈ − 2𝑦 𝑦 ˈ𝑧 = 3 − 0 − 2 = 1 

 

𝑧111 = 6𝑥 − 𝑦2𝑧11 − 2𝑦𝑦1𝑧1 − 2 [𝑦𝑧𝑦11 + 𝑦12
𝑧 + 𝑦𝑦1𝑧1]=6-0-1-2(1+0+0)=3. 

 

Substituting in (4) we get 𝑧1 = 1 + (0.1)1 + 
(0.1)2 

(1) ± − − −= 1.1005 
2! 

 

By Taylor series for 𝑦1, 

𝑦1 = 𝑦(0.1) = 𝑦0 + ℎ𝑦01 + 

 
𝑦1 = 𝑦(0.1) = 1.1002 

 
ℎ2 

𝑦011 + − − − − −= 1 + (0.1)𝑧0 + 
2! 

 
0.01 

 
 

2! 

 

(𝑧01) ± − − 

 

Similarly 𝑦   = 𝑦(𝑥 ) = 𝑦 + ℎ𝑦 1 + 
ℎ2 

𝑦 11 + − − − − − 
 

2 2 1 1 2!     1 

 

𝑦   = 𝑦(𝑥 ) = 1.1002 + (0.1)𝑧 + 
(0.1)2 

𝑧 1 + − − − − − ---------- (5) 
 

2 2 1 2! 1 

0 

0 
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𝑧11 = −1.3311𝑧011 = 3𝑥12 − 𝑦12𝑧1ˈ − 2𝑦 𝑦 ˈ𝑧 = −1.0244 

 
Using (5), 

𝑦1 = 𝑦(1.1) = 1.1002and 𝑦2 = 𝑦(1.2) = 1.2034. 

1   1    1 
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0 

0 

0 

 

RUNGE-KUTTA METHOD FOR SOLVING SECOND ORDER ODE 
 

Any differential equation of second or Higher order differential equations are best treated by 

transforming the given equation into a system of first order simultaneous differential equations 

which can be solved as usual. 

Consider, for example the second order differential equation: 
 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′), 𝑦(𝑥0) = 𝑦0, 𝑦′(𝑥0) = 𝑦′ 
 

Substituting 𝑑𝑦 = 𝑧 .................................. (1) 
𝑑𝑥 

 

We get 𝑑𝑧 = 
𝑑2𝑦 

= 𝑓(𝑥, 𝑦, 𝑧), using (1) ............ (2) 
𝑑𝑥 𝑑𝑥2 

 

Given 𝑦(𝑥0) = 𝑦0 𝑎𝑛𝑑 𝑦′(𝑥0) = 𝑧(𝑥0) = 𝑦′ 

Equations (1) and (2) constitute the equivalent system of simultaneous equations where 

𝑓1(𝑥, 𝑦, 𝑧) = 𝑧, 𝑓2(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧) given. Also 𝑦(0) and 𝑧(0) ae given. 

 

 
Example: Solve 𝑦′′ − 𝑥(𝑦′)2 + 𝑦2 = 0 using R-K method for 𝑥 = 0.2 given 𝑦(0) = 1, 𝑦′(0) = 0 

taking ℎ = 0.2. 
 

Solution: Given 𝑦′′ − 𝑥(𝑦′)2 + 𝑦2 = 0 
 

Substituting 𝑑𝑦 = 𝑓 (𝑥, 𝑦, 𝑧) = 𝑧 ................................. (1) 
 

𝑑𝑥 1 
 

The given equation reduces to 

𝑑𝑧 
= 𝑥𝑧2 − 𝑦2 = 𝑓 (𝑥, 𝑦, 𝑧) … … … . (2) 

 

𝑑𝑥 2 

Given 𝑥0 = 0, 𝑦0 = 1, 𝑧0 = 𝑦′ = 0. Also ℎ = 0.2 
 

By R-K algorithm, 
 

𝑘1 = ℎ𝑓1(𝑥0, 𝑦0, 𝑧0) = (0.2)𝑓1(0,1,0) = 0 

𝑙1 = ℎ𝑓2(𝑥0, 𝑦0, 𝑧0) = (0.2)𝑓2(0,1,0) = −0.2 
 

ℎ 𝑘1 
 

  

𝑙1 
 

 

 ( )   ( ) 

𝑘2 = ℎ𝑓1 (𝑥0 + 
2 

, 𝑦0 + 
2 

, 𝑧0 + 
2 

) = 0.2 𝑓1 0.1,1, −0.1 = −0.02 
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ℎ , 𝑦 
 

 

𝑘1 + , 𝑧 
 

 

𝑙1 + ) ( )   ( ) 
 

 

𝑙2 = ℎ𝑓2 (𝑥0 + 
2 0 2 0 2 

= 0.2 𝑓2 0.1,1, −0.1 = −0.1998 

 

ℎ , 𝑦 
 

 

𝑘2 + , 𝑧 
 

 

𝑙2 + 
 

 

 ( )   ( ) 

𝑘3 = ℎ𝑓1 (𝑥0 + 
2

 

ℎ , 𝑦 
 

 

0 2 

𝑘2 + , 𝑧 
 

 

0 
2 

) = 

𝑙2 + ( 
 

 

0.2 
 

) 

𝑓1 
 

( 

0.1,0.99, −0.0999 
 

) 

= −0.01998 

𝑙3 = ℎ𝑓2 (𝑥0 + 
2 0 

2 0 2 
) = 0.2 𝑓1 0.1,0.99, −0.0999 = −0.1958 

 

𝑘4 = ℎ𝑓1(𝑥0 + ℎ, 𝑦0 + 𝑘3, 𝑧0 + 𝑙3) = (0.2)𝑓1(0.2,0.98, −0.1958) = −0.0392 

𝑙4 = ℎ𝑓2(𝑥0 + ℎ, 𝑦0 + 𝑘3, 𝑧0 + 𝑙3) = (0.2)𝑓2(0.2,0.98, −0.1958) = −0.1905 

1 
∴ 𝑦1 = 𝑦0 + 

6 
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

i.e., 𝑦(0.2) = 1 + 
1 

[0 + 2(−0.02 − 0.01998) − 0.0392] = 0.98014 
6 

 

NUMERICAL DIFFERENTIATION: The numerical differentiation techniques can be used in 

the following two situations. 

1. The function values corresponding to distinct values of the argument are known but the 

function is unknown. For example we may know values of f(x) at various values of x,say 

𝑥𝑖 ,𝑖 = 1,2, ............... 𝑛 in a tabulated form. 

2. The function to be differentiated is complicated and therefore it is difficult to 

differentiate by usual procedures. 

Derivatives using finite differences: 
 

1. Derivatives using Newton’s forward difference formula: 

 
Suppose that we are given at a set of values (𝑥𝑖 , 𝑦𝑖 ) , 𝑖 = 1,2, ............... 𝑛 
We want to find the derivative of y=f(x) passing through the (n+1) points, at a nearer to 

the staring value 𝑥 = 𝑥0 

Newton’s forward difference interpolation formula is 
 

𝑦 = 𝑦 + 𝑝∆𝑦 + 
𝑝(𝑝−1) 

∆2𝑦
 

 + 
𝑝(𝑝−1)(𝑝−2) 

∆3𝑦
 

 

+ ⋯ … … ….(1) 

0 0 2! 0 3! 0 

𝑤ℎ𝑒𝑟𝑒 𝑝 = 
(𝑥−𝑥0)

 
ℎ 

Differentating, eq(1) 
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𝑑𝑦 ( ) 𝑑𝑦 1 = ( ) = 
 

  

1   
2 

1   
3 

1   
4

 
 

   

𝑑𝑥 𝑥=𝑥0 𝑑𝑥 𝑝=0 ℎ 
[∆𝑦0 − 

2 
∆ 𝑦0 + 

3 
∆ 𝑦0 − 

4 
∆ 𝑦0 + ⋯ … … … . ] 



14  

𝑑2𝑦 
(
𝑑𝑥2 

 

) 
𝑥=𝑥0 

𝑑2𝑦 
= (

𝑑𝑥2 

 

) 
𝑝=0 

1 
= 

ℎ2 

[∆2𝑦0 − ∆3𝑦0 + 11 
∆4𝑦0 + ⋯ … … … . ] 

12 

Newton’s Backward difference interpolation formula is 
 

𝑦 = 𝑦 + 𝑝∇𝑦 + 
𝑝(𝑝+1) 

∇2𝑦
 

 + 
𝑝(𝑝+1)(𝑝+2) 

∇3𝑦
 

 

+ ⋯ … … ….(1) 

𝑛 𝑛 2! 𝑛 3! 𝑛 

𝑤ℎ𝑒𝑟𝑒 𝑝 = 
(𝑥−𝑥0)

 
ℎ 

Differentating,eq(1) 
 

𝑑𝑦 ( ) 𝑑𝑦 1 = ( ) = 
 

  

1   
2 

1   
3 

1   
4

 
 

   

𝑑𝑥 𝑥=𝑥0 𝑑𝑥 𝑝=0 ℎ 
[∇𝑦𝑛 + 

2 
∇ 𝑦𝑛 + 

3 
∇ 𝑦𝑛 + 

4 
∇ 𝑦𝑛 + ⋯ … … … . ] 

 

𝑑2𝑦 
(
𝑑𝑥2 

 
) 

𝑥=𝑥0 

𝑑2𝑦 
= (

𝑑𝑥2 

 
) 

𝑝=0 

1 
= 

ℎ2 

 
[∇2𝑦𝑛 + ∇3𝑦𝑛 + 

11 
∇2𝑦𝑛 + ⋯ … … … . ] 

12 

 

1. Find the first and second derivatives of the function tabulated below at the point x=1891 
 

Year x 1891 1901 1911 1921 1931 

Population in 

thousands 
46 66 81 93 101 

 

Solution: The Forward difference table is 
 

x y 
 

 
 

 
 

 
 

 

1891 46  

 
20 

   

 

 

 

 

 

 
-3 

1901 66  

 
15 

-5  

 
2 

1911 81  

 
12 

-3  

 
-1 



15 

 

1921 93  

 
8 

-4 
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1931 101 

Given ℎ = 10, 𝑥0 = 1891, 𝑦0 = 46 By Newton’s forward interpolation formula 
 

 

𝑑𝑦 ( ) 𝑑𝑦 1 = ( ) = 
 

  

1   
2 

1   
3 

1   
4

 
 

   

𝑑𝑥 𝑥=𝑥0 𝑑𝑥 𝑝=0 ℎ 
[∆𝑦0 − 

2 
∆ 𝑦0 + 

3 
∆ 𝑦0 − 

4 
∆ 𝑦0 + ⋯ … … … . ] 

= 
1 

[20 − 
1 

(−5) + 
1 

(2) − 
1 

(−3) + ⋯ … … … . ] 
10 2 3 4 

=2.1616 
 

𝑑2𝑦 
(
𝑑𝑥2 

 
) 

𝑥=𝑥0 

𝑑2𝑦 
= (

𝑑𝑥2 

 
) 

𝑝=0 

1 
= 

ℎ2 

 
[∆2𝑦0 − ∆3𝑦0 + 

11 
∆4𝑦0 + ⋯ … … … . ] 

12 

=   
1 

102 
[(−5) − (2) + 

11 
(−3) + ⋯ … … … . ] 

12 

 

=-0.0975 
 

2. Find the first and second derivatives of the function tabulated below at the point x=1931 
 

Year x 1891 1901 1911 1921 1931 

Population in 

thousands 
46 66 81 93 101 

 

Solution: The Backward difference table is 
 

x y ∇𝑦𝑛 ∇2𝑦𝑛 ∇3𝑦𝑛 ∇4𝑦𝑛 

1891 46  

 
20 

   

 

 

 

 

 

 
-3 

1901 66  

 
15 

-5  

 
2 

1911 81  

 
-3  

 



17 

 

 
1921 

 
93 

12  
-4 

-1 
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 8 

1931 101 

Given ℎ = 10, 𝑥𝑛 = 1931, 𝑦𝑛 = 101 By Newton’s backward interpolation formula 
 

 
 

𝑑𝑦 ( ) 𝑑𝑦 1 = ( ) = 
 

  

1   
2 

1   
3 

1   
4

 
 

   

𝑑𝑥 𝑥=𝑥0 𝑑𝑥 𝑝=0 ℎ 
[∇𝑦𝑛 + 

2 
∇ 𝑦𝑛 + 

3 
∇ 𝑦𝑛 + 

4 
∇ 𝑦𝑛 + ⋯ … … … . ] 

 

= 
1 

[8 + 
1 

(−4) + 
1 

(−1) + 
1 

(−3) + ⋯ … … … . ] 
10 2 3 4 

=0.4916 
 

𝑑2𝑦 
(
𝑑𝑥2 

 
) 

𝑥=𝑥0 

𝑑2𝑦 
= (

𝑑𝑥2 

 
) 

𝑝=0 

1 
= 

ℎ2 

 
[∇2𝑦𝑛 + ∇3𝑦𝑛 + 

11 
∇2𝑦𝑛 + ⋯ … … … . ] 

12 

 

=   
1 

102 
[(−4) + (−1) + 

11 
(−3) + ⋯ … … … . ] 

12 
 

=-0.0775 
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TRANSFORMS 
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INTRODUCTION 

LAPLACE TRANSFORMS 

Laplace Transformations were introduced by Pierre Simmon Marquis De Laplace (1749-

1827), a French Mathematician known as a Newton of French. Laplace Transformations is a 

powerful technique, it replaces operations of calculus by operations of algebra. An Ordinary 

(or) Partial Differential Equation together with Initial conditions is reduced to a problem of 

solving an Algebraic Equation by this method. 

 
USES 

 Particular Solution is obtained without first determining the general solution. 

 Non-Homogeneous Equations are solved without obtaining the complementary 

integral. 

 L.T is applicable not only to continuous functions but also to piecewise continuous 

functions, complicated periodic functions, step functions and impulse functions. 

 
APPLICATIONS: 

 L.T is very useful in obtaining solution of linear differential equations, both ordinary 

and partial, solution of system of simultaneous differential equations, solution of 

integral equations, solution of linear difference equations and in the evaluation of 

definite integrals. 

DEFINITION: 

Let f (t) be a function of‘t’ defined for all positive values of t. Then Laplace 

transforms of f (t) is denoted by L {f (t)} is defined by 

 
 

L f t    e
st f t dt  f s   (1) 

0 

 

provided that the integral exists. Here the parameter‘s’ is a real (or) complex number. 

The relation (1) can also be written as f t   L1  f s



In such a case the function f(t) is called the inverse Laplace transform of f s .The 

 

symbol ‘L’ which transform f(t) into f s


is called the Laplace transform operator. The 

symbol ‘L-1’ which transforms 𝑓(̅ s) to f (t) can be called the inverse Laplace transform 

operator. 

Conditions for Laplace Transforms 
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0
 



Exponential order: A function f (t) is said to be of exponential order ‘a’ If 

 

finite quantity. 

Ex: (i). The function t2 is of exponential order 

lt est f t   a 
t

(ii). The function  et
3

 is not of exponential order (which is not finite quantity) 

Piece – wise Continuous function: A function f (t) is said to be piece-wise continuous over 

the closed interval [a,b] if it is defined on that interval and is such that the interval can be 

divided into a finite number of sub intervals, in each of which f (t) is continuous and has both 

right and left hand limits at every end point of the subinterval. 

Sufficient conditions for the existence of the Laplace transform of a function: 

The function f (t) must satisfy the following conditions for the existence of the L.T. 

(i).The function f(t) must be piece-wise continuous (or sectionally continuous) in any limited 

interval 0  a  t  b . 

(ii).The function f (t) is of exponential order. 

Laplace Transforms of standard functions: 

 
1. Prove that L1  

1
 

s 

Proof: By definition 

 
 e st 

 

e e0 

L1   e
 st .1dt         0  1

s 
if s  0 

   

 
0 

 

L1 

 s 0
 

e  0

s s 

 

2. Prove that Lt  1
s2 

Proof: By definition 

   e st 


e st 



Lt   e
st .tdt  t.   1. 

 

dt 


0   s  s 0
 

 

 
 e st e st   

1
 

 t. 
  

s 
2  
    

s
2

 

3. Prove that Ltn 
n! 

sn1 
where n is a +ve integer 

  e st 
 

e st 

 
 

s 
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Proof: By definition Ltn  
est .t ndt  t

n. 


    n.tn1. dt 

0 0 
s 

 0  0  
n 

 

estt n1dt 

s 0 

0 s 
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s 

s 

s 

 . . 

0 

0 

s 

 

s 

 

 

 
Similarly 

 
n 

Lt n1

Lt n1  
n 1 

Lt n2 

Lt n2   
n  2 

Lt n3


By repeatedly applying this, we get 

Ltn
n n 1 n  2 2 1 

..... . 
s s s s s 

Lt 
nn 

 
n! 

L1  
n!

. 
1 
 

n!
 

    

sn sn     s sn1 

 

Note: Lt n  can also be expressed in terms of Gamma function. 

i.e., Ltn 
 n! 

 
n 1 

 n 1  n!

sn1 sn1 

 

Def: If n>0 then Gamma function is defined by n  
 

ex xn1dx 

 

We have Ltn  
 

est .tndt 

Putting x=st on R.H.S, we get 

 
n 

 

 x  st 

Ltnt   

e x . 
x 1 

.   dx 
 

1 


0 sn   s  dx  dt 
 

 
1  

ex.xndx 
 

 

When t  0, x  0 


Ltn 

sn1  0 

1 
.n 1

sn1 


When t  , x  






If ' n 'is a +veinteger then n 1  n! 

 Lt n   n!  
n1 

Note: The following are some important properties of the Gamma function. 

1. n 1  n.nif n  0 

2. n 1  n! if n is a +ve integer 
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3. 1  1,  12 

Note: Value of n in terms of factorial 
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0 0 

 0 

 

 

 

0 

2  11  1! 

3  2 2  2! 

4  33  3! 
and so on.

 

In general n 1  n! provided ‘n’ is a +ve integer. 

Taking n=0, it defined 0! = 1 1 

 
4. Prove that Leat  

1 
 

 

s  a 

Proof: By definition, 

Leat   
 

est .eat dt  
 

e
satdt 

 e
sat    




 
s  a 






 
e  

   
e0 




 

1 
if s  a 

 

s  a s  a s  a 

 
Similarly Leat  

1 
 

 

s  a 

 

if s  a 

 
5. Prove that Lsinh at 

a 
 

 

s2  a2 

 
Proof: eat   eat  L sinh at   L 

 
 

 
1 
Leat   Leat 




 
2 

 2  
 

 
1   1 

 
1    

 
1  s  a  s  a  

 
2a 

 
a 

2  s  a s  a  2  s2  a2 
 2s2  a2  s2  a2 

 
6. Prove that Lcosh at 

s 
 

 

s2  a2 

 
Proof: 

eat  eat 
L cosh at  L  

 2 

 
1 
Leat   Leat   

1   1 
 

1 


2   2 
 s  a s  a  

 
1  s  a  s  a  

 
2s 

 
s 

2  s2  a2  2s2  a2  s2  a2 

 
7. Prove that Lsin at 

a 
 

 

s2  a2 
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Proof: By definition, 
Lsin at  

 

est sin atdt 
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 e st 

  eax 

  2 2 ssin at  a cos at 
    eax sin bxdx  2 2 a sin bx  b cos bx



 s  a 

 
a 

0  a  b 



s2  a2 

8. Prove that Lcos at 


s 

 
 

s2  a2 

 
Proof: We know that Leat  

1 
 

 

s  a 

Replace ‘a’ by ‘ia’ we get 

Leiat   
   1    

 
  s  ia  

s  ia s  ias  ia

i.e., Lcosat  i sin at 
 s  ia 

 
s2  a2 

Equating the real and imaginary parts on both sides, we have 

Lcos at 

Solved Problems : 

s 

s2  a2 
and Lsin at 

a 
 

 

s2  a2 

1. Find the Laplace transforms of (t2 1)2 
 

Sol: Here f(t)  (t2 1)2  t4  2t2 1 
 

L{(t2+ 1)2} = L{t4+ 2 t2+ 1} = L{t4}+ 2L{t2}+ L{1} 

 

 
4!  2. 

2! 
 

1 
 

4! 
 2. 

2! 
 

1
 

     

s41 
s3 s s5 s3 s 

 
24 


 4 

 
1 

 1 

(24  4s2  s4 ) 

s5 s3 s s5 

eat 1
2. Find the Laplace transform of L  

a 



eat 1 1 

 
  

 
 
 

at 

 
1  at 



Sol: 
L  

a 
= 

a 
L e 1  

a 
Le  L1 

 
1   1 

 
 

 
1  

  
1

 
 

  

a  s  a s 
s(s  a) 
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2 2 

3. Find the Laplace transform of Sin2tcost 

Sol: W.K.T sin 2t cos t  
1 

[2 sin 2t cos t]  
1 

[sin 3t  sin t] 

 L{sin 2t cos t}  L 
 1 

[sin 3t  sin t]
 
 

1 
Lsin 3t  Lsin t 

2 
 2  
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1  3 

 
 

 
1  






2(s2  3) 
 

 

2  s2  9 s2 1
(s2 1)(s2  9) 

4. Find the Laplace transform of Cosh22t 

Sol: w.k.t cosh2 2t  
1 
1 cosh 4t 

2 

Lcosh2 2t 
1 
L(1)  L{cosh 4t}

2 

 
1 1 

 
s  





  

s2  8 
 

 

2  s s2 16 
s(s2 16) 

5. Find the Laplace transform of Cos33t 

Sol: Since cos9t=cos3(3t) 

cos9t=4cos33t-3cos3t (or) cos33t= 
1 
cos 9t  3cos 3t

4 

 
L{cos3 3t} = 

1 
L{cos 9t}+ 

3 
L{cos 3t} 

4 4 

1 s ∴ = . 
  

3 
. 

s 
  

4 s2  81 4 s2  9 

s  1 3  s s2  63

= 
4  s

2  81 s2  9  s2  9s2  81



6. Find the Laplace transforms of sin t  cos t 
2

 

 

Sol: Since sin t  cos t 
2  
 sin2 t  cos2 t  2sin t cos t 

 

1sin 2t 

 

L{(sin t + cos t)2} = 

= 

L{1+ sin 2t} 

L{1}+ L{sin 2t} 

 

 
1 
 

2 
 

s  2s  4 
2 

 

s s2  4 s s2  4

7. Find the Laplace transforms of cost cos2t cos3t 

 
Sol: cos t cos 2t cos 3t  

1 
.cos t 2.cos 2t.cos 3t 

2 
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4 4 

= 
1 

cos t[cos 5t + cos t] =  
1 

[cos t cos 5t + cos2 t] 

2 2 

 
1 
2 cos t cos 5t  2 cos2 t   

1 
cos 6t  cos 4t   1 cos 2t 



= 
1 

[1  cos 2t  cos 4t  cos 6t] 
4 
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 L{cos t cos 2t cos 3t}  
1 

L{1 cos 2t  cos 4t  cos 6t} 
4 

 

= 
1 

[L{1}  L{cos 2t}  L{cos 4t}  L{cos 6t}] 
4 

= 1 1 
 

s 
 

s 
 

s 

4  s s2  4 s2  16 s2  36 

8. Find L.T. of Sin2t 

 Sol: L{sin2 t}  L 
1 cos 2t 




 
2 


 

 
1 

[L{1}  L{cos 2t}]  
1 1 

 
s 



2 2  s s2  4 

9. Find L(√𝒕) 


 1 

1





Sol: L t   L t 
1

2  
   2  

where n is not an integer 

 
1 
1 

s 2 

1 

 1 


 

2 
 

2 





3 3 
  

n 1  n.n

s 2 2s 2 

10. Find 𝑳 {𝒔𝒊𝒏(𝑚𝒕 + 𝑎)}, where  a constant is 

Sol: 𝐿{𝑠𝑖𝑛(𝜔𝑡 + 𝛼)} = 𝐿{𝑠𝑖𝑛𝜔𝑡𝑐𝑜𝑠𝛼 + 𝑐𝑜𝑠𝜔𝑡𝑠𝑖𝑛𝛼} 

= 𝑐𝑜𝑠𝛼 𝐿{𝑠𝑖𝑛𝜔𝑡} + 𝑠𝑖𝑛𝛼 𝐿{𝑐𝑜𝑠𝜔𝑡} 

= 𝑐𝑜𝑠𝛼 
𝜔

 
𝑠2+𝜔2 

+ 𝑠𝑖𝑛𝛼 
𝜔

 
𝑠2+𝜔2 

 
 

Properties of Laplace transform: 

Linearity Property: 

Theorem1: The Laplace transform operator is a Linear operator. 

i.e. (i). Lcf t   c.L f t 

constant 

Proof: (i) By definition 

(ii).L f t   g t   L f t  Lg t Where ‘c’ is 

 

 

Lcf t    e
stcf t  dt c e

st f t  dt  cL f t 
0 0 

(ii) By definition 
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L f t   g t    e
st  f t   g t dt 

0 
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a 

1  a 

 

 

  e
st f t dt   e

st g t dt  L f t  Lg t 
0 0 

Similarly the inverse transforms of the sum of two or more functions of ‘s’ is the sum of the 

inverse transforms of the separate functions. 

Thus, L1  f s  g s  L1  f s L1 g s  f t   g t 



Corollary: Lc1 f t   c2 g t   c1L f t  c2Lg t , 
 

where c1, c2 are constants 

Theorem2: If a, b, c be any constants and f, g, h any functions of t, then 

L{af (t) + bg(t)- 

Proof: By the definition 

ch(t)} = a.L{ f (t)}+ b.L{g(t)}- cL{h(t)} 

 



L{af (t)  bg(t)  ch(t)}   est{af (t)  bg(t)  ch(t)}dt 
0 

 
  

 a. e
st f  t  dt  b e

st g t  dt  c e
sth t  dt 

0 0 0 
 

 a.L{ f (t)}  bL{g(t)}  cL{h(t)} 
 

 

Change of Scale Property: 
 

- If then L{ f (at)}  
1
 

 
 

   s 


L{ f (t)} = f (s) . f  
a  

Proof: By the definition we have 



L{ f (at)}  e
st f (at)dt 

0 

 
Put at  u  dt  

du
 

a 

when t   then u   and t = 0 then u = 0 

 

 
 

su 
 

 L{ f (at)}   e  a
 f (u) 

du 


   

 s 

.u 

. e   f u  du  
1 

. f  



0 

 

Solved Problems : 

1. Find 𝑳{𝐬𝐢𝐧𝐡 𝟑𝒕} 

Sol: 𝐿{sinh 𝑡} = 
1

 
𝑠2−1 

a a 0 a 
 

 

 

 

= 𝑓(𝑠) 

 



34 
 

∴ 𝐿{sinh 3𝑡} = 
1 

𝑓(𝑠⁄ )(Change of scale property) 
 

3 3 

 
1 1 

 
3 

3  s 
3
 

2  

1 
s2  9 
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2. Find 𝑳{𝐜𝐨𝐬 𝟕𝒕} 

Sol: 𝐿{cos 𝑡} = 
𝑠

 
𝑠2+1 

 

 

= 𝑓(𝑠) (𝑠𝑎𝑦) 

𝐿{cos 7𝑡} = 
1 

𝑓(𝑠⁄ ) (Change of scale property) 
 

7 

𝐿{cos 7𝑡} = 
1

 
7 (𝑠 

7 
𝑠⁄7

 
2 

 
= 

𝑠 
𝑠2+49 

 
First shifting property: 

⁄7) +1 

 
  

If L{ f (t)} = f (s) then L{eat f (t)} = f (s - a) 

Proof: By the definition 

 
L{eat 

 


f (t)}   esteat f (t)dt 
0 

 


  e
sat f t  dt 

0 

 


  e
ut f t  dt whereu  s  a 

0 

= f (u)  f s  a




Note: Using the above property, we have L{e- at 
f (t)} = f (s+ a) 

Applications of this property, we obtain the following results 

 
1. L{eat tn}  n!  L(tn )  n! 

(s  a)n1  sn1 



2. L{eat sin bt}  
b  

L(sinbt)  
b 



(s  a)2  b2   s2  b2 

3. L{eat cos bt} 
s  a  

L(cosbt)  
s 






(s  a)2  b2   s2  b2 

4. L{eat sinh bt}  
b  

L(sinhbt)  
b 



(s  a)2  b2   s2  b2 

5. L{eatcosh bt}  
s  a  

L(coshbt)  
s 



(s  a)2  b2  

Solved Problems : 

1. Find the Laplace Transforms of 

s2  b2 


t3e3t 

 Sol: Since 
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L{t3} =  
3!

 
s4 

 

Now applying first shifting theorem, we get 
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0 𝑡<𝑎 

0 

𝑎 𝑎 

L{t3 e- 3t} = 
3! 

 
 

(s + 3)4 

2. Find the L.T. of et cos 2t 

Sol: Since L{cos 2𝑡} = 
𝑠

 
𝑠2+4 

Now applying first shifting theorem, we get 

𝐿{𝑒−𝑡 cos 2𝑡} = 
𝑠 + 1

 
(𝑠 + 1)2 + 4 

 
 
 

𝑠 + 1 
= 

𝑠2 + 2𝑠 + 5 

3. Find L.T of 𝒆𝟐𝒕𝒄𝒐𝒔𝟐𝒕 

Sol: - L [𝑒2𝑡𝑐𝑜𝑠2𝑡] = L [𝑒2𝑡( 
1+𝑐𝑜𝑠2𝑡

)] 
2 

 

= 1 {𝐿[𝑒2𝑡] + 𝐿[𝑒2𝑡𝑐𝑜𝑠2𝑡]} 
2 

= 
1 

( 
1 

 

)+ 1 {𝐿[𝑐𝑜𝑠2𝑡]} 
 

 

2   𝑠−2 2 𝑠→𝑠−2 

= 
1 

( 
1 )+ 1 𝑠−2 

2 𝑠−2 2 (𝑠−2)2+22 

= 
1 

( 
1 )+ 1 𝑠−2 

2 𝑠−2 2 (𝑠2−4𝑠+8) 

 
 

Second translation (or) second Shifting theorem: 
 

If 𝐿{𝑓(𝑡)} = 𝑓(𝑠)𝑎𝑛𝑑 𝑔(𝑡) = {𝑓(𝑡−𝑎),𝑡>𝑎𝑡ℎ𝑒𝑛 𝐿{𝑔(𝑡)} = 𝑒−𝑎𝑠𝑓(𝑠) 

Proof: By the definition 

𝐿{𝑔(𝑡)} = ∞ 𝑒−𝑠𝑡 𝑔(𝑡)𝑑𝑡 =   
𝑎 

𝑒−𝑠𝑡 𝑔(𝑡)𝑑𝑡 +    
∞ 

𝑒−𝑠𝑡 𝑔(𝑡)𝑑𝑡 

∫0 ∫0 ∫𝑎 

= ∫
∞ 

𝑒−𝑠𝑡. 𝑜𝑑𝑡 + ∫
∞ 

𝑒−𝑠𝑡 𝑓(𝑡 − 𝑎)𝑑𝑡 = ∫
∞ 

𝑒−𝑠𝑡 𝑓(𝑡 − 𝑎)𝑑𝑡 

Let t-a = u so that dt = du And also u = 0 when t = a and u →  when t → 
∴ 𝐿{𝑔(𝑡)} = ∞ 

𝑒−𝑠(𝑢+𝑎) 𝑓(𝑢)𝑑𝑢 = 𝑒−𝑎𝑠 ∞ 𝑒−𝑠𝑢 𝑓(𝑢)𝑑𝑢 = 𝑒−𝑎𝑠 ∞ 𝑒−𝑠𝑡 𝑓(𝑡)𝑑𝑡 

∫0 
 

= 𝑒−𝑎𝑠𝐿{𝑓(𝑡)} = 𝑒−𝑎𝑠𝑓(𝑠) 

∫0 ∫𝑎 

Another Form of second shifting theorem: 

If 𝐿{𝑓(𝑡)} = 𝑓(𝑠) 𝑎𝑛𝑑 𝑎 > 0 𝑡ℎ𝑒𝑛 𝐿{𝐹(𝑡 − 𝑎)𝐻(𝑡 − 𝑎)} = 𝑒−𝑎𝑠𝑓(𝑠) 

1, 𝑡 > 0 
where H (t) = { 

0, 𝑡 < 0 

Proof: By the definition 

and H(t) is called Heaviside unit step function. 
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0 

𝑎 

𝐿{𝐹(𝑡 − 𝑎)𝐻(𝑡 − 𝑎)} = ∫
∞ 

𝑒−𝑠𝑡 𝐹(𝑡 − 𝑎)𝐻(𝑡 − 𝑎)𝑑𝑡 → (1) 

Put t-a=u so that dt= du and also when t=0, u=-a when t →  , u→ 

Then 𝐿{𝐹(𝑡 − 𝑎)𝐻(𝑡 − 𝑎)} = ∫
∞ 

𝑒−𝑠(𝑢+𝑎) 𝐹(𝑢)𝐻(𝑢)𝑑𝑢. [𝑏𝑦 𝑒𝑞(1)] 
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0 𝑎 



2 

0 

  e
s(ua) F u  H u  du   e

s(ua)F u  H u  du 
a 0 

0   𝑒−𝑠(𝑢+𝑎) 𝐹(𝑢). 0𝑑𝑢 +    
∞ 

𝑒−𝑠(𝑢+𝑎) 𝐹(𝑢). 1𝑑𝑢 
= ∫

−𝑎 
∫0 

 
[Since By the definition of H (t)] 

= ∫
∞ 

𝑒−𝑠(𝑢+𝑎) 𝐹(𝑢)𝑑𝑢 = 𝑒−𝑎𝑠 



∫
∞ 

𝑒−𝑠𝑢 𝐹(𝑢)𝑑𝑢 

 esa  e
st F t  dt by property of Definite Integrals 

0 

 
 

 

Note: 

= 𝑒−𝑎𝑠𝐿{𝐹(𝑡)} = 𝑒−𝑎𝑠𝑓(𝑠) 

H t  aisalsodenoted byu t  a

Solved Problems  
cost   


if t  

1. Find the L.T. of g (t) when g t   







3 3 

0 if t   
3

 

Sol. Let f t   cos t 

∴ 𝐿{𝐹(𝑡)} = 𝐿{𝑐𝑜𝑠𝑡} = 
𝑠

 
𝑠2+1 

 
 

= 𝑓(𝑠) 

𝑓(𝑡 − 𝜋⁄3) = 𝑐𝑜𝑠(𝑡 − 𝜋⁄3), 𝑖𝑓 𝑡 > 𝜋⁄3 

𝑔(𝑡) = { 
0 , 𝑖𝑓 𝑡 < 𝜋⁄ 

Now applying second shifting theorem, then we get 

 
𝐿{𝑔(𝑡)} = 𝑒 

 
−𝜋𝑠 𝑠 

3    ( 
2

 

−𝜋𝑠 
 

) = 
𝑠.𝑒 3 

𝑠 +1 𝑠 +1 

2. Find the L.T. of (ii)(𝒕 − 𝟐)𝟑𝒖(𝒕 − 𝟐) (ii) 𝒆−𝟑𝒕𝒖(𝒕 − 𝟐) 

Sol: (i). Comparing the given function with f(t-a) u(t-a), we have a=2 and f(t)=t3 

∴ 𝐿{𝑓(𝑡)} = 𝐿{𝑡3} = 
3! 

= 
6

 
 

 

= 𝑓(𝑠) 

𝑠4 𝑠4 

Now applying second shifting theorem, then we get 

𝐿{(𝑡 − 2)3𝑢(𝑡 − 2)} = 𝑒−2𝑠 
6

 
𝑠4 

= 
6𝑒−2𝑠 

𝑠4 

(ii). 𝐿{𝑒−𝑠𝑡𝑢(𝑡 − 2)} = 𝐿{𝑒−𝑠(𝑡−2). 𝑒−6𝑢(𝑡 − 2)} = 𝑒−6𝐿{𝑒−3(𝑡−2)𝑢(𝑡 − 2)} 

𝑓(𝑡) = 𝑒−3𝑡 then 𝑓(𝑠) = 
1

 
𝑠+3 

Now applying second shifting theorem then, we get 

3 
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𝐿{𝑒−3𝑡𝑢(𝑡 − 2)} = 𝑒−6. 𝑒−2𝑠 
1

 
𝑠+3 

= 
𝑒−2(𝑠+3) 

𝑠+3 
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0 

 



 = 

Multiplication by‘t’: 

Theorem: If  𝑳{𝒇(𝒕)} = 𝒇(𝒔) 𝒕𝒉𝒆𝒏 𝑳{𝒕𝒇(𝒕)} = 
−𝒅 

𝒇(𝒔) 
𝒅𝒔 

 
Proof: By the definition 






f s    e
st f t  dt 

0 

d d 


 f s  e st f t  dt 
ds ds 0 

By Leibnitz’s rule for differentiating under the integral sign, 

d 
f s    






est f t  dt 

ds 0 s 
 



  test f t  dt 
0 

= − ∫
∞ 

𝑒−𝑠𝑡{𝑡𝑓(𝑡)}𝑑𝑡 = − 𝐿{𝑡𝑓(𝑡)} 

Thus 𝐿{𝑡𝑓(𝑡)} = 
−𝑑 

𝑓(𝑠) 
𝑑𝑠 

∴ 𝐿{𝑡𝑛𝑓(𝑡)} = (−1)𝑛 
𝑑𝑛

 

𝑑𝑠𝑛 

 
 

 

= 𝑓(𝑠) 

Note: Leibnitz’s Rule 

If f  x,  and
 




f  x, 


be continuous functions of x and 

then 

𝑑  { 
 

 

𝑏 𝑓(𝑥, 𝛼)𝑑𝑥} = 𝑏 𝜕 𝑓(𝑥, 𝛼)𝑑𝑥 
 

 

𝑑𝛼 ∫𝑎 ∫
𝑎 𝜕𝛼 

Where a, b are constants independent of 

Solved Problems: 

1. Find L.T of tcosat 

Sol: Since 𝐿{𝑡𝑐𝑜𝑠 𝑎𝑡} = 
𝑠
 

𝑠2+𝑎2 

𝐿{𝑡𝑐𝑜𝑠 𝑎𝑡} = − 
𝑑 

[ 
𝑠 

] 
𝑑𝑠   𝑠2+𝑎2 

=
−𝑠2+𝑎2−𝑠.2𝑠 

=   
𝑠2−𝑎2 

 
2. Find t2sin at 

(𝑠2+𝑎2)2 (𝑠2+𝑎2)2 

Sol: Since 𝐿{𝑠𝑖𝑛 𝑎𝑡} = 
𝑎

 
𝑠2+𝑎2 

𝐿{𝑡2. 𝑠𝑖𝑛 𝑎𝑡} = (−1)2 
𝑑2   

(    
𝑎 

) 
𝑑𝑠2     𝑠2+𝑎2 

d 
 

2as 



ds  s2   a2 
2  

2a 3s2  a2 




s2  a2 
3
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3. Find L.T of tet sin 3t 



43  

2 

Sol: Since 𝐿{𝑠𝑖𝑛 3𝑡} = 
3

 
𝑠2+32 

∴ 𝐿{𝑡𝑠𝑖𝑛 3𝑡} = 
−𝑑 

[   
3

 

 

] = 
6𝑠 

 

 
Now using the shifting property, we get 

𝑑𝑠   𝑠2+32 (𝑠2+9)2 

𝐿{𝑡𝑒−𝑡𝑠𝑖𝑛 3𝑡} = 
6(𝑠+1)

 
((𝑠+1)2+9)2 

4. Find 𝑳{𝒕𝒆𝟐𝒕𝒔𝒊𝒏 𝟑𝒕} 

Sol: Since 𝐿{𝑠𝑖𝑛 3𝑡} = 
3

 
𝑠2+9 

= 
6(𝑠+1) 

(𝑠2+2𝑠+10)2 

L e2t sin 3t 
3 




s  2
2  
 9 

3 
 

 

s2  4s 13 

 

𝐿{𝑡𝑒2𝑡𝑠𝑖𝑛 3𝑡} = (−1) 
𝑑  

[ 
3

 ] = (−1) [ 0−3(2𝑠−4) ] 

𝑑𝑠  𝑠2−4𝑠+13 (𝑠2−4𝑠+13)2 

=
    32s  4 


 6s  2  

s2  4s 13
2 

s2  4s 13
2

 

5. Find the L.T. of  1 tet 
2

 

Sol: Since (1 + 𝑡𝑒−𝑡)2 = 1 + 2𝑡𝑒−𝑡 + 𝑡2𝑒−2𝑡 

L 1 tet 
2  

 L 1  2Ltet  Lt2e2t 


 
1 





d   1  


 

2 d 2  1 


s 
21 

ds 
 

s 1
  1 ds2 

 
s  2 




   

 
1 


 2 


 d     1 
s s 1

2

 
 ds  s  2 


 

1 


s 

 
2 

s 1
2

 

 

 
2 

s  2
3

 

6. Find the L.T of t3e-3t (already we have solved by another method) 

Sol: 𝐿{𝑡3𝑒−3𝑡} = (−1)3 
𝑑3 

𝐿{𝑒−3𝑡} 
𝑑𝑠3 

= − 
𝑑3  

( 
1

 ) = 
−3!(−1)3 

𝑑𝑠3 

=  
3! 

(𝑠+3)4 

𝑠+3 (𝑠+3)4 

7. Find 𝑳{𝐜𝐨𝐬𝐡 𝒂𝒕 𝐬𝐢𝐧 𝒂𝒕} 

Sol. 𝐿{cosh 𝑎𝑡 sin 𝑎𝑡} = 𝐿 {
𝑒𝑎𝑡+𝑒−𝑎𝑡 

. sin 𝑎𝑡} 
2 
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=1 [𝐿{𝑒𝑎𝑡 sin 𝑎𝑡} + 𝐿{𝑒−𝑎𝑡 sin 𝑎𝑡}] 
2 

 
1  a 


 a 

2 

s  a

2  
 a2 s  a

2  
 a2 






45  

0 1 

] 

0 

0 2 





8. Find the L.T of the function 

 
Sol: By the definition 

f t   t 1
2 
, t  1 

 0 0  t  1 

𝐿{𝑓(𝑡)} = 
∞ 

𝑒−𝑠𝑡 𝑓(𝑡)𝑑𝑡 =   
1 

𝑒−𝑠𝑡 𝑓(𝑡)𝑑𝑡 +   
∞ 

𝑒−𝑠𝑡 𝑓(𝑡)𝑑𝑡 
∫0 ∫0 ∫1 

 
1 

est 0dt 
 

est t 1
2  

dt 

 
∞ 

= ∫1 

 

𝑒−𝑠𝑡 
 

(𝑡 − 1)2 
 

𝑑𝑡 = [(𝑡 − 1) 2 𝑒
−𝑠𝑡  ∞ 

−𝑠    1 

 
∞ 

− ∫1 

 

2(𝑡 − 1) 
𝑒−𝑠𝑡 

𝑑𝑡
 

−𝑠 

 0  
2 

 

est t 1 dt 

s 1 

2 


 e st  




 e st 

 
s 
t 1 

s 
  1 

s 
dt 

  1 


 
2 

0  
1 

est dt 
 



 

2  est 




 
 
2 

e st 





s  s 1 

 s2   s  

s3 1 

 
2 0  es   2 

es 

s3 s3 

9. Find the L.T of f (t) defined as f (t)  3 , t >2 

 0 , 0<t<2 

Sol: 𝐿{𝑓(𝑡)} = ∫
∞ 

𝑒−𝑠𝑡 𝑓(𝑡)𝑑𝑡 

 
2 

est f t dt  
 

est f t dt 

= 
2 

𝑒−𝑠𝑡. 0𝑑𝑡 +    
∞ 

𝑒−𝑠𝑡 3𝑑𝑡 
∫0 ∫2 

 0  
 

est 3dt  
3 est 

  

 
3 0  e2s 

2 s 2 s 

 
3 

e2 s 

s 

10. Find 𝑳{𝒕 𝒄𝒐𝒔(𝒂𝒕 + 𝒃)} 

Sol: 𝐿{𝑐𝑜𝑠(𝑎𝑡 + 𝑏)} = 𝐿{cos 𝑎𝑡 cos 𝑏 − sin 𝑎𝑡 sin 𝑏} 

= cos 𝑏. 𝐿{cos 𝑎𝑡} − sin 𝑏 𝐿{sin 𝑎𝑡} 

= cos 𝑏. 
𝑠

 
𝑠2+𝑎2 

− sin 𝑏. 
𝑎

 
𝑠2+𝑎2 

1 
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𝐿{𝑡. 𝑐𝑜𝑠(𝑎𝑡 + 𝑏)} = 
−𝑑 

[cos 𝑏. 
𝑠 

− sin 𝑏. 
𝑎 

] 
𝑑𝑠 𝑠2+𝑎2 𝑠2+𝑎2 

 
s2   a2 .1 s.2s 

  s2  a2 .0  a.2s 

cos b.
 s2  a2 

2

 

  sin b 
 


s2  a2 

2 

   

= 
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𝑡 2𝑠  

𝒔 

0 

𝑠 

𝑠 

0 s 

 
1 s2  a2 

2  

cos b  2as sin b

s2  a2 
2  

11. Find L.T of L [t𝒆𝒕𝒔𝒊𝒏𝒕] 

Sol: - We know that L[sint] = 1 
𝑠2+1 

 
L[tsint] = (-1) 𝑑 L[sint] = - 𝑑 ( 1 









)= - 
(−1)2𝑠 

𝑑𝑠 
 

= 
2𝑠 

𝑑𝑠  𝑠2+1 (𝑠2+1)2 

(𝑠2+1)2 

By First Shifting Theorem 

L [t𝑒 𝑠𝑖𝑛𝑡] = [   2 2] 
(𝑠 +1)    𝑠→𝑠−1 

=  
2(𝑠−1) 

((𝑠−1)2+1)2 
= 

2(𝑠−1) 

(𝑠2−2𝑠+2)2 

Division by‘t’: 

Theorem: If 𝑳{𝒇(𝒕)} = 𝒇(𝒔) 𝒕𝒉𝒆𝒏 𝑳 {
𝟏 

𝒇(𝒕)} = 
𝒕 

 
∫

∞ 
𝒇(𝒔)𝒅𝒔 

Proof: We have f s 
 

est f t dt 

Now integrating both sides w.r.t s from s to  , we have 

      

 


 f (s)ds  e st f (t)dt ds 

0 s  0 

 
 


  

f t estdsdt 

 

(Change the order of integration) 

 
  

f t  
 

estdsdt ( t is independent of‘s’) 

0  s 

  e st 



 0     
f t   

t  
  dt 

 s 

= 
∞ 

𝑒−𝑠𝑡 
𝑓(𝑡) 

𝑑𝑡(𝑜𝑟)𝐿 {
1 

𝑓(𝑡)} 
∫0 𝑡

 

Solved Problems: 

1. Find 𝑳 {
𝐬𝐢𝐧 𝒕

} 
𝒕 

Sol: Since 𝐿{𝑠𝑖𝑛𝑡} = 
1

 

𝑡 

 
 
 
 
 

= 𝑓(𝑠) 

𝑠2+1 

Division by‘t’, we have 

𝐿 {
sin 𝑡} =

 
𝑡 

∫
∞ 

𝑓(𝑠)𝑑𝑠 = 
∞ 

∫𝑠 

 

1 
 

 

𝑠2+1 

 

𝑑𝑠 

= [𝑇𝑎𝑛−1𝑠]∞ = 𝑇𝑎𝑛−1∞ − 𝑇𝑎𝑛−1𝑠 
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2 
 Tan1s  cot1 s 

 
2. Find the L.T of 

sin at 

t 
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𝑠 



s


b 

s 

Sol: Since 𝐿{sin 𝑎𝑡} = 
𝑎

 
𝑠2+𝑎2 

Division by t, we have 

 
 

= 𝑓(𝑠) 

𝐿 {
sina 𝑡} =

 
𝑡 

∫
∞ 

𝑓(𝑠)𝑑𝑠 = 
∞ 

∫𝑠 

 

𝑎 
 

 

𝑠2+𝑎2 

 

𝑑𝑠 

 a. 
1 Tan1 

a 
 Tan1  Tan1 

  
2 
Tan1  s 

a  cot1 

3. Evaluate 𝑳 {
𝟏−𝐜𝐨𝐬 𝐚 𝒕

} 
𝒕 

Sol: Since 𝐿{1 − cos a 𝑡} = 𝐿{1} − 𝐿{𝑐𝑜𝑠 𝑎𝑡} = 
1 

− 
𝑠

 

 
𝐿 {

1−cos a 𝑡} = 
∞ 

(
1 

− 
𝑠 

 
 

 ) 𝑑𝑠 
𝑠 𝑠2+𝑎2 

𝑡 
∫𝑠 


𝑠 𝑠2+𝑎2 

1 




 

log s 

1 

logs2  a2 
2 s 

 1 




 s2 

 
 






 
2 log s  log s2  a2 

 log

2 2 


2 
 

  




s 2 


 s  a s 

 
1   1  1 


 

s2 


2 
l og 


 a2 

 
2 
log1 log 

s
2 
 a

2 
  1 

s2   
  s 

1 

  
1
 

 
 

 s2  
   s2  2 

 

 
 

 

𝟏−𝐜𝐨𝐬 𝒕 

2 
l og 

s
2 
 a

2   log 
s

2 
 a

2   log 

Note: 𝑳 { 
𝒕 

} = log (Putting a=1 in the above problem) 

 

4. Find 𝑳 {
𝒆−𝒂𝒕−𝒆−𝒃𝒕

} 
𝒕 

Sol: 𝐿 {
𝑒−𝑎𝑡−𝑒−𝑏𝑡

}= 
 

 

 
 

∞ 
( 

1 

 
 

− 
1   

) 𝑑𝑠 
 

 

𝑡 
∫𝑠 

 

𝑠+𝑎 𝑠+𝑏 


 log s  a  log s  b
  

 

log

 s  a 


  


 
 s 

 

s 
as 



s 
a 

 
 

 

s2 

s2 1 
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s  a 




 
1 

a 
 

   s 
 

 s  a 


l t log   log 
s  





1 

b 


s 
 s  b 

 log1 log(s  a)  log(s  b)  log
 s  b 
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 s  

s 

𝑠 

5. Find L 
1 cos t  

t 2 
 

Sol: L 
1 cos t  

 L 
1

.
1 cos t  ..... 1 

t 2  
t t 


   



Now L 
1 cos t  


  

 1 


    s  
ds  


log s  

1 
logs2 1

 
t 

 s   
 

s s2 1
 


 2 



    s 

1  s
2      

 

1  s
2       1 s

2 
1 

 
2 
log 

s
2 
1
  

2 
log 

s
2 
1
  

2 
log 

s
2

 

 

 
1 cos t   1 

 
  

s2 1 
 

L 
 t2 


 
 s 

log ds 2 
s2 

 
1   s2 1   




     s2  2 

2 
log   

s2 .s  s s2 1
 

s3  .sds 
  

 
1  




s
 

1 

 


 s
2 
1 





     ds 



2 
 lt s.log 1 

s
2   s log  

s
2
   2s s

2 
1




s     

1   1 1 1  s2 1 




  lt s     ....   s log   2Tan1s

2 
s     s

2 2s4 3s6  s2   

 

 
1 




 1    1 

 
  

  x2 x3 x4 


2 
0  s log1 

s
2    2 

2 
 Tan  s 

log1 x  x 
 2 3 4 .....

      
 cot1 s  

1 
s log


1  

1 


2 
 

s2  


6.Find L.T of 𝒆

−𝒂𝒕−𝒆−𝒃𝒕

 

𝒕 

Sol: W.K.T L [𝑒−𝑎𝑡] = 
1

 
𝑠+𝑎 

 




, L [𝑒−𝑏𝑡] = 

1
 

𝑠+𝑏 

L[
𝑓(𝑡)

]=  
∞ 

𝑓(̅  𝑠)𝑑𝑠 

𝑡 
∫𝑠 

𝑒−𝑎𝑡 − 𝑒−𝑏𝑡 ∞ 1 1 
∴ L [ 

𝑡 
] = ∫ (

𝑠 + 𝑎 
− 

𝑠 + 𝑏
)𝑑𝑠 

= [log(𝑠 + 𝑎) − log(𝑠 + 𝑏)]∞ 

= log(
𝑠+𝑎

)∞ 
 

𝑠+𝑏 𝑠 

1+
𝑎

 
 = log( 𝑠)∞ 

1+
𝑏  𝑠 
𝑠 

=log (1)-log (𝑠+𝑎) 
𝑠+𝑏 

 





s 



52 
 

=0- log (𝑠+𝑎) = log (𝑠+𝑏) 
𝑠+𝑏 

Laplace transforms of Derivatives: 

𝑠+𝑎 
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0 

0 

0 

 0 0 

If f 1 t  be continuous and 𝐿{𝑓(𝑡)} = 𝑓(𝑠) 𝑡ℎ𝑒𝑛 𝐿{𝑓1(𝑡)} = 𝑠𝑓(𝑠) − 𝑓(0) 
 

 

Proof: By the definition 

𝐿{𝑓1(𝑡)} = ∫
∞   

𝑒−𝑠𝑡𝑓1(𝑡)𝑑𝑡 

 e
st f t 

  


 

sest f t dt 
 

(Integrating by parts) 

 est f t 
  

 s
 

est f t dt 

l t 
t 

e
 st 

f (t)  f (0) +𝑠. 𝐿{𝑓(𝑡)} 

Since f (t) is exponential order 

 l t 
t 

e
 st 

f (t) =0 

∴ 𝐿{𝑓1(𝑡)} = 0 − 𝑓(0) + 𝑠𝐿{𝑓(𝑡)} 
 

= 𝑠𝑓(𝑠) − 𝑓(0) 

The Laplace Transform of the second derivative f11(t) is similarly obtained. 

∴ 𝐿{𝑓11(𝑡)} = 𝑠. 𝐿{𝑓1(𝑡)} − 𝑓1(0) 

 s.s f s  f 0  f 1 0

 s2 f s  sf 0  f 1 0

∴ 𝐿{𝑓111(𝑡)} = 𝑠. 𝐿{𝑓11(𝑡)} − 𝑓11(0) 

= 𝑠[𝑠2𝐿{𝑓(𝑡)} − 𝑠𝑓(0) − 𝑓1(0)] − 𝑓11(0) 

= 𝑠3𝐿{𝑓(𝑡)} − 𝑠2𝑓(0) − 𝑠𝑓1(0) − 𝑓11(0) 

Proceeding similarly, we have 

𝐿{𝑓𝑛(𝑡)} = 𝑠𝑛𝐿{𝑓(𝑡)} − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓1(0) … … 𝑓𝑛−1(0) 
 

 

Note 1: 𝐿{𝑓𝑛(𝑡)} = 𝑠𝑛𝑓(𝑠) 𝑖𝑓 𝑓(0) = 0 𝑎𝑛𝑑 𝑓1(0) = 0, 𝑓11(0) = 0 … 𝑓𝑛−1(0) = 0 

Note 2: Now |𝑓(𝑡)| ≤ 𝑀. 𝑒𝑎𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑎 𝑎𝑚𝑑 𝑀. 

We have |𝑒−𝑠𝑡𝑓(𝑡)| = 𝑒−𝑠𝑡|𝑓(𝑡)| ≤ 𝑒𝑎𝑡. 𝑀𝑒𝑎𝑡 

=M. 𝑒−(𝑠−𝑎)𝑡 → 0 𝑎𝑠 𝑡 → ∞ if s>a 

𝑙𝑡 
𝑡→∞ 

𝑒−𝑠𝑡𝑓(𝑡) = 0 𝑓𝑜𝑟   𝑠 > 𝑎 

Solved Problems: 

Using the theorem on transforms of derivatives, find the Laplace Transform of the 

following functions. 

= 

∴ 
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(i). eat (ii). cosat (iii). t sin at 
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t 

0 

∫ 

(i). Let f t   eat Then f 1 t   a.eat and f 0 1 

𝑁𝑜𝑤 𝐿{ 𝑓1(𝑡)} = 𝑠. 𝐿{ 𝑓(𝑡)} − 𝑓(0) 

𝑖. 𝑒. , 𝐿{𝑎𝑒𝑎𝑡 } = 𝑠. 𝐿{𝑒𝑎𝑡 } − 1 

𝑖. 𝑒. , 𝐿{𝑒𝑎𝑡 } − 𝑠. 𝐿{𝑒𝑎𝑡 } = −1 

𝑖. 𝑒. , (𝑎 − 𝑠)𝐿{𝑒𝑎𝑡 } = −1 

∴ 𝐿{𝑒𝑎𝑡 } =  
1

 
𝑠−𝑎 

(ii). 𝐿𝑒𝑡 𝑓(𝑡) = 𝑐𝑜𝑠𝑎𝑡 𝑡ℎ𝑒𝑛 𝑓1(𝑡) = −𝑎𝑠𝑖𝑛𝑎𝑡 𝑎𝑛𝑑 𝑓11(𝑡) = −𝑎2𝑐𝑜𝑠𝑎𝑡 

∴ 𝐿{ 𝑓11(𝑡)} = 𝑠2𝐿{ 𝑓(𝑡)} − 𝑠. 𝑓(0)−𝑓1(0) 

Now f 0  cos 0 1and f 1 0  a sin 0  0 

𝑇ℎ𝑒𝑛 𝐿{−𝑎2 cos 𝑎𝑡} = 𝑠2𝐿{cos 𝑎𝑡} − 𝑠. 1 − 0 

⟹ −𝑎2𝐿{cos 𝑎𝑡} − 𝑠2𝐿{cos 𝑎𝑡} = −𝑠 

⟹ −(𝑠2 + 𝑎2)𝐿{cos 𝑎𝑡} = −𝑠 ⇒ 𝐿{cos 𝑎𝑡} = 
𝑠

 
𝑠2+𝑎2 

(iii). Let f t   t sin at then f 1 t   sin at  at cos at 

f 11 t   a cos at  acos at  at sin at  2a cos at  a2t sin at 

Also f(0) = 0 and 𝑓1(0) = 0 

𝑁𝑜𝑤 𝐿{ 𝑓11(𝑡)} = 𝑠2𝐿{ 𝑓(𝑡)} − 𝑠𝑓(0)−𝑓1(0) 

𝑖. 𝑒. , 𝐿{2𝑎 cos 𝑎𝑡 − 𝑎2𝑡 sin 𝑎𝑡} = 𝑠2𝐿{tsin 𝑎𝑡} − 0 − 0 

𝑖. 𝑒. ,2𝑎 𝐿{cos 𝑎𝑡} − 𝑎2𝐿{𝑡 sin 𝑎𝑡} − 𝑠2𝐿{tsin 𝑎𝑡} = 0 

𝑖. 𝑒. , −(𝑠2 + 𝑎2)𝐿{t sin 𝑎𝑡} = 
−2𝑎𝑠

 
𝑠2+𝑎2 

Laplace Transform of Integrals: 

⇒ 𝐿{t sin 𝑎𝑡} = 
2𝑎𝑠

 
(𝑠2+𝑎2)2 

 
 If 𝐿{𝑓(𝑡)} = 𝑓(𝑠) 𝑡ℎ𝑒𝑛 𝐿 { 

𝑡 
𝑓(𝑥) 𝑑𝑥} = 

𝑓(𝑠)
 

 
Proof: 

∫0 𝑠
 

Let g t   0  
f xdx 

Then 𝑔1(𝑡) = 
𝑑 

[ 
𝑡 

𝑓(𝑥) 𝑑𝑥] = 𝑓(𝑡) 𝑎𝑛𝑑 𝑔(0) = 0 
𝑑𝑡 0 

Taking Laplace Transform on both sides 

𝐿{𝑔1(𝑡)} = 𝐿{𝑓(𝑡)} 

But 𝐿{𝑔1(𝑡)} = 𝑠𝐿{𝑔(𝑡)} − 𝑔(0) = 𝑠𝐿{𝑔(𝑡)} − 0 [𝑆𝑖𝑛𝑐𝑒 𝑔(0) = 0] 

∴ 𝐿{𝑔1(𝑡)} = 𝐿{𝑓(𝑡)} 

⟹ 𝑠𝐿{𝑔(𝑡)} = 𝐿{𝑓(𝑡)} ⇒ 𝐿{𝑔(𝑡)} = 
1 

𝐿{𝑓(𝑡)} 
𝑠 

𝐵𝑢𝑡 𝑔(𝑡) = ∫
𝑡 

𝑓(𝑥) 𝑑𝑥 



56  

t 

𝑡→0 

𝑠 

s 

𝑠 

𝑠 

∫ 

∫ 

∴ 𝐿 { 
 

 

𝑡 𝑓(𝑥) 𝑑𝑥} = 
𝑓(𝑠)

 

0 𝑠 

 
 

Solved Problems: 
 

1. Find the L.T of  0 
sin atdt 

Sol: L{sin 𝑎𝑡} = 
𝑎 

= 𝑓(𝑠) 
𝑠2+𝑎2 

Using the theorem of Laplace transform of the integral, we have 
 

𝑡 𝑓(𝑠) 𝐿 { 𝑓(𝑥) 𝑑𝑥} = ∫0 

∴ 𝐿 { 
𝑠 

𝑡 sin 𝑎𝑡} = 
𝑎

 
 

 ∫
0 𝑠(𝑠2+𝑎2) 

2. Find the L.T of  
t  sin t 

dt 

0 t 

Sol: 𝐿{sin 𝑡} = 
1

 
𝑠2+1 

𝑎𝑙𝑠𝑜 𝑙𝑡 sin 𝑡 = 1 𝑒𝑥𝑖𝑠𝑡𝑠 
𝑡 

∴ 𝐿 {
sin 𝑡

} = 
𝑡 

∫
∞ 

𝐿{sin 𝑡}𝑑𝑠 = 
∞ 

∫𝑠 
1 

 
 

𝑠2+1 
𝑑𝑠 

 Tan1s
  

 Tan1 Tan1s  

𝑖. 𝑒. , 𝐿 {
sin 𝑡

} = 𝑇𝑎𝑛−1(1⁄ )(𝑜𝑟)𝑐𝑜𝑡−1𝑠 
𝑡 

2 
Tan1s  cot1 s (or)Tan1  1s 

𝑡 sin 𝑡 1 1 ∴ 𝐿 { 𝑑𝑡} = 𝑇𝑎𝑛−1(1⁄ ) (𝑜𝑟) 𝑐𝑜𝑡−1𝑠 
0 𝑡 𝑠 𝑠 𝑠 

3. Find L.T of 𝒆−𝒕 𝒕 𝒔𝒊𝒏𝒕 
𝒅𝒕

 
 

 

 
Sol: L [ 𝑒−𝑡 

∫𝟎   𝒕
 

𝑡 𝑠𝑖𝑛𝑡 
𝑑𝑡]

 

0 𝑡 

We know that 

L {sint} = 1 
𝑠2+1 

 

= 𝑓(̅  𝑠) 

L {
𝑠𝑖𝑛𝑡

} =
 

 
 

∞ 𝑓(̅  𝑠)𝑑𝑠 =  
∞     1

 𝑑𝑠 

𝑡 
∫𝑠 

=(𝑡𝑎𝑛−1𝑠)∞ 

∫𝑠 𝑠2+1 

=𝑡𝑎𝑛−1∞ − 𝑡𝑎𝑛−1𝑠 = 
𝜋 

− 𝑡𝑎𝑛−1𝑠 = 𝑐𝑜𝑡−1𝑠 
2 

∴ L {
𝑠𝑖𝑛𝑡

} = 𝑐𝑜𝑡−1𝑠 
𝑡 

Hence L { 
𝑡 𝑠𝑖𝑛𝑡 

𝑑𝑡} = 
1 

𝑐𝑜𝑡−1𝑠 
0     𝑡 𝑠 

By First Shifting Theorem 
 

L [ 𝑒−𝑡 

∫ 

∫ 
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𝑡 𝑠𝑖𝑛𝑡 𝑑𝑡] =𝑓(̅  𝑠 + 1) = (

𝑐𝑜𝑡−1𝑠
) 

  

0 𝑡 𝑠 𝑠→𝑠+1 ∫ 
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 0 s 

s 1 e2bs 

𝑡 

∴ L [ 𝑒−𝑡 ∫ 
𝑠𝑖𝑛𝑡 

𝑑𝑡] = 
1

 
 

𝑐𝑜𝑡−1(𝑠 + 1) 

𝑡 𝑠 + 1 
0 

 

 

Laplace transform of Periodic functions: 

If f (t) is a periodic function with period ‘a’. i.e, f t  a  f t  then 

L  f t   
1 a 

est f t  dt 
 

1 e sa   0 

Eg: sin x is a periodic function with period 2

i.e., sin x  sin2  x  sin4  x............. 

Solved Problems: 
 

 
1. A function f (t) is periodic in (0,2b) and is defined as f t 



 1 if 

 

0  t  b 

 

Find its Laplace Transform. 

 1 if b  t  2b 

Sol: L  f t   
1 2b 

est f t  dt 
 

1 e2bs   0 
 

 
1 




b e
st f t  dt  2b e

st f t  dt 

1 e2bs   0 b 

 
1 




b estdt  2b 

e stdt 

1 e2bs   0 b 

1  est 
b

  est  
2b 

 
1 e2bs 

 
s 



     

 b  

 
1 

 e sb  1  e2bs   e sb 

s 1 e2bs   

L  f t   
  1  

1 2esb  e2bs 





2. Find the L.T of the function f t   sin t if 0  t  






 0 if 
 
 t  

2 
where f t  has period 

2
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Sol: Since f (t) is a periodic function with period 
2




L  f t   
1 a 

est f t dt 
 

1 e sa   0 
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1 e
s 2 





0 

0 

0 a 



L f t  




1 


2 
 est f t dt 

1   
 

est sin t dt 



2 
 

e
st 

.0dt 




0  

 




1  est s sin t   cost 
 







 b  
at 

 


eat 

s2  2 

0 

a  
e sin bt  

a
2 
 b

2 a sin bt  b cos bt 

 
  1    1  es 

 .   



1 e
2s

 

 s

2  2 


Laplace Transform of Some special functions: 

1. The Unit step function or Heaviside’s Unit functions: 
 

It is defined as 𝑢 
 

(𝑡 − 𝑎) 
0   𝑡 < 𝑎 

= { 
1 𝑡 > 𝑎 

Laplace Transform of unit step function: 

To prove that 𝐿{𝑢(𝑡 − 𝑎)} = 
𝑒−𝑎𝑠

 

𝑠 

Proof: Unit step function is defined as 𝑢 (𝑡 − 𝑎) 
0   𝑡 < 𝑎 

= { 
1 𝑡 > 𝑎 

Then 𝐿{𝑢(𝑡 − 𝑎)} = ∫
∞ 

𝑒−𝑠𝑡𝑢(𝑡 − 𝑎) 𝑑𝑡 

 
a 

estu t  adt  
 

estu t  adt 

 
a 

est .0dt  
 

est .1dt 
0 a 

 

 e st 



  est dt   


  

1
 

 

 
. e

  eas  


eas 

 
 

a 

 

∴ 𝐿{𝑢(𝑡 − 𝑎)} = 
𝑒−𝑎𝑠

 

𝑠 

 s a 
s s 

Laplace Transforms of Dirac Delta Function:  
1⁄∈

 

 
 

0 ≤ 𝑡 ≤∈ 

The Dirac delta function or Unit impulse function𝑓∈(𝑡) = { 
0 𝑡 >∈ 

2. Prove that 𝑳{𝒇∈ (𝒕)} = 
𝟏−𝒆−𝒔∈

 

𝒔∈ 
hence show that 𝑳{𝜹(𝒕)} = 𝟏 
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∈ 
Proof: By the definition 𝑓 (𝑡) = {

1⁄∈ 
0 ≤ 𝑡 ≤∈ 

0 𝑡 >∈ 
And Hence 𝐿{𝑓 (𝑡)} = 

∞ 
𝑒−𝑠𝑡𝑓 (𝑡) 𝑑𝑡 

∈ ∫0 ∈ 

= 
∈ 

𝑒−𝑠𝑡𝑓 (𝑡) 𝑑𝑡 +   
∞ 

𝑒−𝑠𝑡𝑓 (𝑡) 𝑑𝑡 
∫0 ∈ ∫∈ ∈ 
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0 

0 

0 

0 

= ∫
∈ 

𝑒−𝑠𝑡 
1 

𝑑𝑡 +   
∞ 

𝑒−𝑠𝑡. 0 𝑑𝑡 

0 ∈ 
∫

∈ 

1   𝑒−𝑠𝑡   ∈ 
1 

 
  

 

 −𝑠∈ 
 

0 1−𝑒−𝑠∈ 
 

 

= [ ] = − 
∈ −𝑠   0 ⁄∈ 𝑠 [𝑒 

− 𝑒 ] = 
𝑠∈ 

∴ 𝐿{𝑓 (𝑡)} = 
1−𝑒−𝑠∈

 
 

∈ 𝑠∈ 

Now 𝐿{𝛿(𝑡)} = 𝑙𝑡   𝐿{𝑓 (𝑡)} =   𝑙𝑡 1−𝑒−𝑠∈ 
 

 

∈→0 ∈ ∈→0 𝑠∈ 

∴ 𝐿{𝛿(𝑡)} = 1 𝑢𝑠𝑖𝑛𝑔 L-Hospital rule. 

Properties of Dirac Delta Function: 

1. ∫
∞ 

𝛿(𝑡) 𝑑𝑡 = 0 

2. ∫
∞ 

𝛿(𝑡)𝐺(𝑡) 𝑑𝑡 = 𝐺(0) where G(t) is some continuous function. 

3. ∫
∞ 

𝛿(𝑡 − 𝑎)𝐺(𝑡) 𝑑𝑡 = 𝐺(𝑎) where G(t) is some continuous function. 



4. G(t) 1 t  a  G1(a) 
0 

Solved Problems: 

1. Prove that 𝑳{𝜹(𝒕 − 𝒂)} = 𝒆−𝒂𝒔 

Sol: By Translation theorem 

L{𝛿(𝑡 − 𝑎)} = 𝑒−𝑎𝑠𝐿{𝛿(𝑡)} 

= 𝑒−𝑎𝑠 [sin 𝑐𝑒 𝐿{𝛿(𝑡)} = 1] 

2. Evaluate ∫
∞ 

𝐜𝐨𝐬 𝟐𝒕 𝜹(𝒕 − 𝝅⁄ ) 𝒅𝒕 
𝟎 𝟑 

Sol: By using property (3) then we get 

∫
∞ 

𝛿(𝑡 − 𝑎)𝐺(𝑡)𝑑𝑡 = 𝐺(𝑎) 

Here 𝑎 = 𝜋⁄3 , 𝐺(𝑡) = cos 2𝑡 

G a  G  
3   cos 2 

3 
 1

2 

∴ ∫
∞ 

cos 2𝑎𝑡 𝛿(𝑡 − 𝜋⁄ ) 𝑑𝑡 = cos 2 𝜋⁄ = −𝜋⁄ 
0 3 3 2 



3. Evaluate e
4t 1 t  2 dt 

0 

Sol: By the 4th Property then we get 



 1 t  aG t  dt  G1(a) 
0 

G t   e4t and a  2 

G1 t   4.e4t 
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G1 a  G1 2  4.e8 
 



e
4t 1 t  2 dt  G1 a  4.e8

 
0 

 

 

Inverse Laplace Transforms: 

If f s is the Laplace transforms of a function of f (t) i.e. 𝐿{𝑓(𝑡)} = 𝑓(𝑠) then f (t) 
 

is called the inverse Laplace transform of 

∴ 𝐿−1 is called the inverse L.T operator. 

f s




and is written as 𝑓(𝑡) = 𝐿−1{𝑓(𝑠)} 

 
 

Table of Laplace Transforms and Inverse Laplace Transforms 
 

S.No. 𝐿{𝑓(𝑡)} = 𝑓(𝑠) 𝐿−1{𝑓(𝑠)} = 𝑓(𝑡) 

1. 𝐿{1} = 1⁄𝑠 𝐿−1{1⁄𝑠} = 1 

2. 𝐿{𝑒𝑎𝑡} = 
1

 
𝑠 − 𝑎 

𝐿−1{1⁄𝑠 − 𝑎} = 𝑒𝑎𝑡 

3. 𝐿{𝑒−𝑎𝑡} = 
1

 
𝑠 + 𝑎 

𝐿−1{1⁄𝑠 + 𝑎} = 𝑒𝑎𝑡 

4. 𝐿{𝑡𝑛} =   
𝑛!   

𝑛 𝑖𝑠 𝑎 + 𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
𝑠𝑛+1 

1 𝑡𝑛 
𝐿−1 { } = 

𝑠𝑛+1 𝑛! 

5. (𝑛 − 1)! 
𝐿{𝑡𝑛−1} = 

𝑠𝑛 

𝑡𝑛−1 

𝐿−1{1⁄𝑠𝑛} = , 𝑛 = 1,2,3 … 
(𝑛 − 1)! 

6. 𝑎 
𝐿{sin 𝑎𝑡} = 

𝑠2 + 𝑎2 
𝐿−1 { 

1 
} = 

1 
. sin 𝑎𝑡 

𝑠2 + 𝑎2 𝑎 

7. 𝑠 
𝐿{cos 𝑎𝑡} = 

𝑠2 + 𝑎2 
𝐿−1 { 

𝑠 
} = cos 𝑎𝑡 

𝑠2 + 𝑎2 

8. 𝑎 
𝐿{sinh 𝑎𝑡} = 

𝑠2 − 𝑎2 
𝐿−1 { 

1 
} = 

1 
sinh 𝑎𝑡 

𝑠2 − 𝑎2 𝑎 

9. 𝑠 
𝐿{cosh 𝑎𝑡} = 

𝑠2 − 𝑎2 
𝐿−1 { 

𝑠 
} = cosh 𝑎𝑡 

𝑠2 − 𝑎2 

10. 𝐿{𝑒𝑎𝑡 sin 𝑏𝑡} = 
𝑏

 
(𝑠 − 𝑎)2 + 𝑏2 

𝐿−1 {  
1 

} = 
1 

. 𝑒𝑎𝑡 sin 𝑏𝑡 
(𝑠 − 𝑎)2 + 𝑏2  𝑏 

11. 𝐿{𝑒𝑎𝑡 cos 𝑏𝑡} = 
𝑠 − 𝑎

 
(𝑠 − 𝑎)2 + 𝑏2 𝐿−1 {  

(𝑠 − 𝑎) 
} = 𝑒𝑎𝑡 cos 𝑏𝑡 

(𝑠 − 𝑎)2 + 𝑏2 

12. 𝐿{𝑒𝑎𝑡 sinh 𝑏𝑡} = 
𝑏

 
(𝑠 − 𝑎)2 − 𝑏2 

𝐿−1 {  
1 

} = 
1 

. 𝑒𝑎𝑡 sinh 𝑏𝑡 
(𝑠 − 𝑎)2 − 𝑏2  𝑏 

13. 𝐿{𝑒𝑎𝑡 cosh 𝑏𝑡} = 
𝑠 − 𝑎

 
(𝑠 − 𝑎)2 − 𝑏2 𝐿−1 {  

(𝑠 − 𝑎) 
} = 𝑒𝑎𝑡 cosh 𝑏𝑡 

(𝑠 − 𝑎)2 − 𝑏2 

14. 𝐿{𝑒−𝑎𝑡 sin 𝑏𝑡} = 
𝑏

 
(𝑠 + 𝑎)2 + 𝑏2 

𝐿−1 {  
1 

} = 
1 

. 𝑒−𝑎𝑡 sin 𝑏𝑡 
(𝑠 + 𝑎)2 + 𝑏2  𝑏 
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s s 

t   
 

2
 

−1 𝑠−2  1−1 

−1 𝑠     1−1 

4. Find 𝑳 { } 

−1 1    1−1 

 −𝑡 

5. Find 𝑳 {   𝟐 } 

15. 𝐿{𝑒−𝑎𝑡 cos 𝑏𝑡} = 
𝑠 + 𝑎

 
(𝑠 + 𝑎)2 + 𝑏2 

𝐿−1 {  
𝑠 + 𝑎 

} = 𝑒−𝑎𝑡 cos 𝑏𝑡 
(𝑠 + 𝑎)2 + 𝑏2 

16. 𝐿{𝑒𝑎𝑡 𝑓(𝑡)} = 𝑓(𝑠 − 𝑎) 𝐿−1{𝑓(𝑠 − 𝑎)} = 𝑒𝑎𝑡𝐿−1{𝑓(𝑠)} 

17. 𝐿{𝑒−𝑎𝑡 𝑓(𝑡)} = 𝑓(𝑠 + 𝑎) 𝐿−1{𝑓(𝑠 + 𝑎)} = 𝑒−𝑎𝑡 𝑓(𝑡)𝑒−𝑎𝑡𝐿−1{𝑓(𝑠)} 

 

 

 

Solved Problems : 

 
1. Find the Inverse Laplace Transform of 

 

s2  3s  4 
 

 

s3 

Sol: 𝐿−1 {
𝑠3−3𝑠+4

} = 𝐿−1 {1⁄ − 3. 1⁄ + 4⁄ } 
𝑠3 𝑠 𝑠2 𝑠3 

 L1 1
s 3L1  1 2  L1 4  

3


 1 3t  4. 
2 

1 3t  2t 
2! 

2. Find the Inverse Laplace Transform of 𝒔+𝟐 
𝒔𝟐−𝟒𝒔+𝟏𝟑 

Sol: 𝐿−1 {
 𝑠+2 

} = 𝐿−1 { 
𝑠+2

 } = 𝐿−1 {  𝑠−2+4   } 

𝑠2−4𝑠+13 (𝑠−2)2+9 (𝑠−2)2+32 

      
= 𝐿 { } +4. 𝐿 { } 

(𝑠−2)2+32 

 e2t cos 3t  
4 

e2t sin 3t 
3 

 
3. Find the Inverse Laplace Transform of 

 
Sol: 𝐿−1 {

2𝑠−5
} = 𝐿−1 {

 2𝑠   
−

   5 
} 

(𝑠−2)2+32 

 
 
 
 

2s  5 
 

 

s2  4 

𝑠2−4 𝑠2−4 𝑠2−4 

        
= 2𝐿 { } − 5𝐿 { } 

𝑠2−4 

 2.cosh 2t  
1
 

 
 

𝑠2−4 

 

−𝟏   𝟐𝒔+𝟏   

𝒔(𝒔+𝟏) 

5. sinh 2t 
2 

 

 

Sol: 𝐿−1 {
𝑠+𝑠+1

} = 𝐿−1 {
 1    

+ 
1
} 

𝑠(𝑠+1) 𝑠+1 𝑠 

   
= 𝐿 { } + 𝐿 { } = 𝑒 + 1 

𝑠+1 𝑠 

−𝟏   𝟑𝒔−𝟖  

𝟒𝒔 +𝟐𝟓 
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−𝟏  3𝑠−8 3𝑠  

 1−1  
 −1 

2 2 

7. Find 𝑳 { 𝟐 } 

.cos t  .  sin 

Sol: 𝑳 { } = 𝐿 { } − 8𝐿 { } 
4𝑠2+25 4𝑠2+25 4𝑠2+25 

 

= 
3 

𝐿−1 { 
𝑠 

} − 
8 

𝐿−1 { 
1 

} 
    

4 𝑠2+(5⁄  )
2 4 𝑠2+(5⁄ )

2
 

 
3 5 8 2 5 

4 2 4 5 2 

 
3 5 4 5 

 cos t  sin t 
4 2 5 2 

 
6. Find the Inverse Laplace Transform of 

 
s 

 

 

s  a 
2

 

Sol: 𝐿−1 {
  𝑠 

} = 𝐿−1 {
𝑠+𝑎−𝑎

} = 𝑒−𝑎𝑡𝐿−1 {
𝑠−𝑎

} 
(𝑠+𝑎)2 (𝑠+𝑎)2 𝑠2 

= 𝑒−𝑎𝑡𝐿−1 {
1 

− 
𝑎 

} 
𝑠 𝑠2 

= 𝑒−𝑎𝑡 [𝐿−1 {
1
} − 𝑎. 𝐿−1 {

 1 
}] 

 
 
 

−𝟏    𝟑𝒔+𝟕  

𝒔 −𝟐𝒔−𝟑 

𝑠 

 eat 1 at

𝑠2 

 

 
Sol: 

 
Let 

3s  7 



s2  2s  3 

A 


 

s 1 

 
B 

 

 

s  3 

𝐴(𝑠 − 3) + 𝐵(𝑠 + 1) = 3𝑠 + 7 

𝑝𝑢𝑡 𝑠 = 3, 4𝐵 = 16 ⇒ 𝐵 = 4 

𝑝𝑢𝑡 𝑠 = −1, − 4𝐴 = 4 ⇒ 𝐴 = −1 

 
3s  7 




s2  2s  3 

1 



s 1 

4 
 

 

s  3 

    3𝑠 + 7  −1 4 
𝐿−1 { } = 𝐿−1 { + } = −1𝐿−1 {   

1
 } + 4𝐿−1 {   

1 
} 

𝑠2 − 2𝑠 − 3 𝑠 + 1 𝑠 − 3 

 et  4.e3t 

𝑠 + 1 𝑠 − 3 

 

8. Find 𝑳−𝟏 { 
𝒔 

} 
(𝒔+𝟏)𝟐(𝒔𝟐+𝟏) 

Sol: 𝑠 
(𝑠+1)2(𝑠2+1) 

=   
𝐴 

𝑠+1 
+  

𝐵 

(𝑠+1)2 
+ 

𝐶𝑠+𝐷 

𝑠2+1 

𝐴(𝑠 + 1)(𝑠2 + 1) + 𝐵(𝑠2 + 1) + (𝐶𝑠 + 𝐷)(𝑠 + 1)2 = 𝑠 

Equating Co-efficient of s3, A+C=0……..(1) 

t 
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Equating Co-efficient of s2, A+B+2C+D=0…….(2) 

Equating Co-efficient of s, A+C+2D=1…….(3) 
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−1 𝑠  1

 1−1 

9. Find 𝑳 {  𝟒 }𝟒 

2 

 
 

 

put s  1, 2B  1  B   
1
 

2 

Substituting (1) in (3) 2D  1  D  
1
 

2 

Substituting the values of B and D in (2) 

i.e. 𝐴 − 
1 

+ 2𝐶 + 
1 

= 0 ⇒ 𝐴 + 2𝐶 = 0, 𝑎𝑙𝑠𝑜 𝐴 + 𝐶 = 0 ⇒ 𝐴 = 0, 𝐶 = 0 
2 2 

1 1 
 

s 
 2  2 

   

s 1
2  s2 1 s 1

2
 

s2 1 

 

   
𝐿 { } = [𝐿 { } − 𝐿−1 { 

1 
}] 

(𝑠+1)2(𝑠2+1) 2 𝑠2+1 (𝑠+1)2 

= 
1 

[sin 𝑡−𝑒−𝑡𝐿−1 { 
1 

}] 
2 

 
1 
sin t  tet 

−𝟏 𝒔  

𝒔 +𝟒𝒂 

𝑠2 

Sol: Since s4  4a4  s2  2a2 
2  

 2as
2

 

= (𝑠2 + 2𝑎𝑠 + 2𝑎2)(𝑠2 − 2𝑎𝑠 + 2𝑎2) 

 
Let 

s 

s4  4a4 
 

As  B 

s2  2as  2a2 
 

Cs  D
s2  2as  2a2 

(𝐴𝑠 + 𝐵)(𝑠2 − 2𝑎𝑠 + 2𝑎2) + (𝐶𝑠 + 𝐷)(𝑠2 + 2𝑎𝑠 + 2𝑎2) = 𝑠 

 
Solving we get 

 
𝑠 

A  0, C  0, B  
1 

, D  
1

 
4a 4a 

−
 1 1   

𝐿 { } = 𝐿−1 { 4𝑎 } + 𝐿−1 { 4𝑎 } 

𝑠4+4𝑎4 𝑠2+2𝑎𝑠+2𝑎2 𝑠2−2𝑎𝑠+2𝑎2 

 

 
1 

a.L1 
 1 

 
 

 
 

1 
.. L

1  1 


 

4 

(s  a)2  a2 

 
4a 


(s  a)2  a2 




1 1 
.  .e 

4a a 

 
at sin at 

1 
. 
1 

4a a 
eat sin at 

   
1 

sin at eat  eat   
4a2 

𝒔𝟐−𝟑𝒔+𝟒 

1 

4a2 

 

.sin at.2sinh at 


𝟑(𝒔𝟐−𝟐)

𝟐
 

1 

2a2 

 
sin at sinh at 
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10. Find i. 𝑳−𝟏 { 

 
Sol: 

𝒔𝟑 } ii. 𝑳−𝟏 { 𝟐𝒔𝟓 
} 

i. 𝐿−1 {
𝑠2−3𝑠+4

} = 𝐿−1 {
𝑠2 

− 
3𝑠 

+ 
4 

} = 𝐿−1 {
1 

− 
3 

+ 
4 

} 
𝑠3 𝑠3 𝑠3 𝑠3 𝑠 𝑠2 𝑠3 
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−1 {1} −1  1 −1  1  

11. Find 𝑳 [ 𝟐  

]𝟐 

2 

 

   

 

    
= 𝐿 − 3𝐿 {   } + 4𝐿 { } 

𝑠 𝑠2 𝑠3 

= 1 − 3𝑡 + 4 
𝑡2 

= 1 − 3𝑡 + 2𝑡2 
2! 

3(𝑠2−2)
2 

3 (𝑠2−2)
2 

3 𝑠4−4𝑠2+4 

ii. 𝐿−1 { 
2𝑠5 

} = 𝐿−1 { 
2 

 

3 
−1   

1 
 

  

𝑠5 
} = 𝐿−1 { 

2 
 

4 4 3 
 

   

𝑠5 } 

−1   
1 

 
 

 
−1  

1 
 

 

 
−1  

1 
 

 

= 
2 

𝐿 {
𝑠 

− 
𝑠3 + 

𝑠5} + 
2 

{𝐿 {
𝑠

} − 4𝐿 
{ } + 4𝐿 
𝑠 

{ }} 
𝑠 

 
3  






t2 
 

4t4  
 

3  




  

2 
 

t4  
 

1 
 4 


 

 2  

2 
1   4 

2! 4! 



2 
1 2t 

6 
 

4 
t 6t 6   

−𝟏    𝒔  

𝒔 −𝒂 

Sol: 

  𝑠  2𝑠 𝐿−1 [ ] = 𝐿−1 [ 
 1 

−1 [ 
2𝑠 

 
 

 1 
−1 [ 

1 
+ 

1 
]
 

 
   

𝑠2 − 𝑎2 
2(𝑠2 − 𝑎2)

] = 
2 

𝐿
 (𝑠 − 𝑎)(𝑠 + 𝑎)

] = 
2 

𝐿
 

𝑠 − 𝑎 𝑠 + 𝑎 

 

 
1 
e

at  eat   cosh at 
 

 12. Find L1  4 





(s 1)(s 2) 






 Sol: L1  4  
 4L1  1 

 
 4 L1 

 1 





1  
 4[et  e2t ] 

 
 


(s 1)(s 2) 





(s 1)(s 2) 


 

 s 1 s  2 

 13. Find L1  1 





(s 1)2 (s2  4) 





Sol: 1 

 
A 

 
B 

 
Cs  D 

   

(s 1)2 (s2  4) s 1 (s 1)2 s2  4 

A  
2 

, B  
1 

, C  
2 

, D  
3 

25 5 25 25 

 L1  1  
 

2 L1  1  
 

1 
L
1  1 

 
 

 
 

2 L1  s  
 

3 
L
1  1 




(s 1)2 (s2  4) 
 

25 
 

s 1
 

5 


(s 1)2 
 

25 
 

s2  4 
 

25 
 

s2  4 



         

 
2 

e
t   L1 1  

 
1 

et L1  1  




   

2 
cos 2t 




3   1 . sin 2t 
 

  

25 
 

s 
 

5  
s2  25 25  2 

3 5 
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2 

et  
1 

et .t  
2 

cos 2t  
3 

sin 2t 

25 5 25 50 

1  s2  s  2 

14. Find L    
s(s  3)(s 2) 
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Sol: 

s2  s  2  
A 
 

B   
   

C 
 

   

s s  3s  2 s s  3 s  2 

Comparing with s2, s, constants, we get 

A  1
3 

, B  4
15

,C 

1  s2  s  2  
     1 4 2 

L    L 1    
 s(s  3)(s 2)   3s 15(s  3) 5(s  2) 

 L1  1  
 L1 




4  
 L1  2 


 


3s 

 
15(s  3) 

 
5(s  2) 




 
1 
 4 

e3t  
2 

e2t 

3 15 5 

1  s2  2s  4 

15. Find L 
(s2  9)(s 5) 






s2  2s  4 A 
 

Bs  C 
 Sol: 

(s2  9)(s 5) 
= 

s  5 
s2  9 

Comparing with s2, s, constants, we get 
 

 

A  31
34

, B  3
34

,C  83
34

 

1  s2  2s  4  1  s2  2s  4 

L 
(s2  9)(s 5) 

  L
 

(s2  9)(s 5) 






 L1  31  
 L1 




3  
 L1  83 


 


34(s 5) 

  
34(s2  9) 

  
34(s2  9) 




 
31 

e5t  3cos 3 t 
83 

sin 3t 




First Shifting Theorem: 

34 3 


If L1  f (s)  f (t), thenL1  f (s  a)  eat f (t) 

 

Proof: We have seen that Leat  f (t)   f (s  a)  L1  f (s  a)  eat f (t)  eat L1  f (s)
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(s  2 


2) 

16 






Solved Problems : 

 
1. Find L1 

 1  
 L1  f (s  2)
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1 

 

     

   

   

 

     

 Sol: L1  1  
 e2t L1  1 


 


(s  2)2 16 

  
s2 16 





 e2t . sin 4t  e

2t sin 4t 
 

 

4 4 
 
 

 2. Find L1  3s  2 

 
s2  4s  20 




 Sol: L1  3s  2  
 L1  3s  2  

 L1  3(s  2)  4 




 
s2  4s  20 

 
(s  2)2 16 

 
(s  2)2  42 




 3L1 

 s  2  

 4L1  1 





(s  2)2  42 

 
(s  2)2  42 




 3e2t L1  s  
 4e2t L1  1 

 
s2  42 

  
s2  42 




 3e2t cos 4t  4e2t 
1 

sin 4t 
4 

3. Find L1 

 s  3 

 
s2 10s  29 




 Sol: L1  s  3  
 L1  s  3  

 L
1  s  5  8 

 
s2 10s  29 

 
(s  5)2  22 

 
(s  5)2  22 






 e5t L1  s  8 
 
 e5t 


cos 2t  

1 




 
s2  22   8. 

2 
sin 2t 

   

Second shifting theorem: 

If L
1  f (s)  f (t),then L

1
{e

as 
f (s)}  G(t) , where G(t)  

 f t  a





if t  a

 
0 if t  a




Proof: We have seen that G(t)  
 f t  a



 

if t  a

 
0 if t  a




 

then LG t   eas. f (s) 

 L1 eas  f (s)  G t 







Solved Problems :  
1 1 es 


1 


e3s 
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1. Evaluate (i) L  
s

2 
1 

 (ii) L 


(s  4)2 
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a 
 

a 


a 

a 
 

a 


1 1 es  1  1 




1  es   

Sol: (i) L 
 

s2 1 
= L    

s2 1
 + L    

s2 1



     

Since L1 
 1  

 sin t  f (t) , say 

 
s2 1


 

1  es   

sin(t  ) , if t   

∴ By second Shifting theorem, we have L 
 

s2 1
   

0 , if t   



   

1  es  




1 1 es 

or L    
s

2 
1
 =sin(t-π)H(t-π)= -sint. H(t-π) 

Hence L  
s

2 
1 

=sint-sint. H (t-π) =sint [1- H (t-π)] 
 

Where H (t-π) is the Heaviside unit step function 

(ii) Since L1 
 1

  
 e4t L1  1 





(s  4)2 

  
s2 



   

= e4t .t  f (t) , say 

 

 

      e3s 





e4(t3).(t  3) 

 

 
 

, if t  3

∴ By second Shifting theorem, we have L 1     


(s  4)2   0 , if t  3

1  e3s 


4(t 

or L 
(s  4)2 

 = e
 

3).(t  3) H(t-3) 

 

Where H (t-3) is the Heaviside unit step function 

Change of scale property: 

If L f t   f s ,  Then L1  f as   
1
 f 

 t 
, a  0 

 

Proof: We have seen that L f t   f s



Then f as  
1 

L 
 

f 
 t  

, a  0      
a      

 L1  f as  
1
 f 

 t 
, a  0 
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Solved Problems : 

 1. If L1  s 
 

= 
1 

t sin t , find L1 
 8s 




 


(s2 1)2 

 
2 


(4s2 1)2 
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 Sol: We have L1  s  1 = t sin t , 
 

 


(s2 1)2 

 
2 

Writing as for s, 

L1  as  1 1 = 
 

  

t t 
=  

t 
 

  

.sin 
t 

, by change of scale property. 
 

 2    2 2  . . sin 
2

 

(a s 1)  2  a  a a 2a a 

Putting a=2, we get 

L1  2s 
 

= 
t 

sin 
t 

or L1 
 8s

 
 

  

 1 t = sin 
 

  


(4s2 1)2 

   
8 2 


(4s2 1)2 

 
2 2 

Inverse Laplace Transform of derivatives: 
Theorem: L  f (s)  f (t) , then L  f 

 
 

(s)  (1)  t   f (t) where f  
 

(s)   f (s)

n 

1 1 

n n n 
n 

d 
n   

 
ds 

d 
n Proof: We have seen that L tn f (t)  (1)n    

dsn 
f (s) 

 

 

Solved Problems : 

 L1  f n 

(s)  (1)n t n f (t) 

 1. Find L1 log 
s 1




 
s 1






 Sol: Let 

 

L1 

log 

s 1 
 f (t) 

 
 

 
s 1




 

L f (t)  log 
s 1

 
s 1 

Ltf (t)  
d 

log 
s 1



ds 



Ltf (t) 
 1 


s 1 

s 1



1 
 

 

s 1 

tf (t)  L1 
 1 

   
1   



 
s 1 s 1




tf (t)  1.L1 
   1

  
  L

1   1  




 
s 1




= 𝑒−𝑡 + 𝑒𝑡 

 
s 1




t f t   2sinh t  f t   
2sinh t

 



78 
 

t 

 L1 log 
s 1 

 
2 sinh t 

 
s 1

 
t 
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t 

 

 


 (s2  2s  2)2 

1 
1 s  1 et 

Note: L  log s  
 = 

t 

 

2. Find L1 cot1(s)


Sol: Let L1 cot1(s) 


f (t) 

L f (t)  cot1(s) 

Ltf (t)  
d 

[cot1(s)   
  1  

 
1

 

ds 
1 s2  1 s2 

tf (t)  L1 
 1  

 sin t 

 
s2 1




f t   
sin t

 
t 

 L1 cot1(s)  
1 

sin t 

 

 
 

Inverse Laplace Transform of integrals: 
 

   






 f (t)  
 

 

Theorem: L1  f (s)  f (t) , then L 1  f (s)ds 



 f (t) 

 s 






 t 

Proof: we have seen that L    
t 

   f (s)ds 

 

   
 






s 

 
f (t)  

 L 1  f (s)ds 



Solved Problems : 

1. Find L1 



 s 

 

s 1 

 t 

 




(s2  2s  2)2 







Sol: Let f (s) 
s 1 

 

 

(s2  2s  2)2 

   






s 1 

Then L1  f (s)= L 1 

 s 

ds



= L1  s 1 
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[(s 1)2 1]2 






= et L1  s 
 

, by First Shifting Theorem 


(s2 1)2 
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  s2 

 

 

   f s 


 et 

t 
sin t  

t 
et sin t 

 
  

L1  s  
 

t  sin at 

2 2 


(s2  a2 )2 
 

2a 
 

Multiplication by power of’s’: 
 

 

 

Theorem: L1  f (s)  f (t) , and f (0),then L1 s f (s)  f 1(t) 

 

Proof: we have seen that L f 1(t)  s f (s)  f (0) 

 L f 1(t)  s f (s) [ 

L1 s f (s)  f 1(t) 

f (0)  0] or 

 

Note: L1 sn f (s)  f n (t),if f n (0)  0forn  1, 2,3 ......... n1 

Solved Problems : 

1. Find (i) L1 
 s  

(ii) L1 
 s 




(s  2)2 

 
(s  3)2 






Sol: Let 

 
 

f (s) 
1 

(s  2)2 

 

Then 

L1  f (s)  L1 
 1  

= e2t L1 
 1 

= e2t .t  f (t) , 


(s  2)2 

  


Clearly f (0) =0 

 Thus L1 
 s  

= L1 

s.

 s  
= L1 s. f (s)= f 1(t) 

 


(s  2)2 

    
(s  2)2 




   

= 
d 

(te2t ) = t(2e2t )  e2t .1= e2t (1 2 t) 
dt 

Note: in the above problem put 2=3, then L1 
 s  

= e3t (1 3t) 


(s  3)2 















Division by S: 

Theorem: If L1  f (s)  f (t) , Then 

 

 
 

t 

L 1     f u  du 
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 s  0 
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t 

 t  f s
Proof: We have seen that L  f u  du  

s
 

 
    
 f s  

t
 

 0 

 L 1 
    f u  du 

 s  0 

   f s  t  t 
 

Note: If L1  f (s)  f (t) , then L 1    f u  du.du 

   s
2     

 
  

  0  0   

Solved Problems : 

 
1. Find the inverse Laplace Transform of 

1 
 

 

s2 (s2  a2 ) 

Sol: Since L1 
 1  

= 
1 

sinat , we have 


(s2  a2 ) 

 
a 

1  1  t 
1 

L 
s(s2  a2 ) 

 =  a 
sin atdt 

  0 

1  cos at t 1 1 
= 

a 
 

a 
 =  

a2 
(cosat1) = 

a2 
(1 cosat) 

 0 

1  1  t 
1 

Then L  
s2 (s2  a2 ) 

 =  a2 
(1 cos at)dtdt 

  0 

1  sin at 
t 

1 






sin at 


= 
a

2  t 
a 

 = 
a2  t  

a 


 L1  1  
= 

1 
 

 

 0  

 
t  

sin at 


 
s2 (s2  a2 ) 


 a2   a 



   





Convolution Definition: 

If f (t) and g (t) are two functions defined for 

 
 

t  0 

 
 

then the convolution of f (t) and g (t) is 

 

defined as f t * g t   0  
f ug t  udu 

f t * g t canalsobewrittenas  f * g t 

Properties: 

The convolution operation * has the following properties 

1. Commutative i.e.  f * g t  g * f t 

 2. Associative 
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3. Distributive 

 f * g * h t    f * g * h t 

 f * g  h t    f * g t    f * h t  for t  0 
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0 0 

0     0 

0 0 

0 0 

 

 
 

s2    2 

a 

 

0 u 

0 u 

Convolution Theorem: If f (t) and g(t) are functions defined for t  0 then 

L f t * g t   L f t .Lg t   f s.g s

i.e., The L.T of convolution of f(t) and g(t) is equal to the product of the L.T of f(t) and g(t) 

Proof: WKT  L  t   
 

est 
t  

f u  g t  u  dudt 

 
 


t 

est f u g t  udu dt 

The double integral is considered within the region enclosed by the line 

u=0 and u=t 

On changing the order of integration, we get 

L  t   
 


 

est f u g t  udt du 

 
 

esu f u 
 

estu g t  u dt du 

 
 

esu f u 
 

esv g v dv du put 

 
t  u  v 

 
 

esu f ug sdu  g s 
 

esu f udu 

L f t * g t   L f t .Lg t   f s.g s

g s. f s





Solved Problems : 

 1. Using the convolution theorem find 

 
L1  s 






 Sol: 

 
L1  s  

= L1  s 
 

 

 
. 

1 





(s2  a2 )2 





(s2  a2 )2 

  
s2  a2   s2  a2 




   

Let f s 
s 

s2  a2 
and g s 

1 
 

 

s2  a2 

So that L1  f (s)  L1 
 s  

 cos at   f (t)  say 

L1 g(s)  L1 
 s  

 
1 

sin at  g(t)  say 

 
s2  a2 

 
a 

By convolution theorem, we have 

  s  t 1 



86 
 

2 2   2 L 1    cos au. .sin a(t  u)du 
  

(s  a )  0 a 
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0 

0 

 

 
 a s  b 

 


(s2    2  


b  ) 

 
s2    2 


a 

2  

1 
t 

 
2a 

sin(au at  au) sin(au  at  au)du 

 

1 
t 

 
2a 

sin at sin(2au  at)du 

 

1  1 
t

 

 
2a 

sin at.u  
2a 

.cos(2au  at)



 
1 

t sin at  
1 

cos2at  at   
1 

cosat 



2a  2a 2a 


 
1 

t sin at  
1 

cos at  
1 

cos at 



2a  2a 2a 


 
t 

sin at 
2a 

 

 
1  s2 

2. Use convolution theorem to evaluate L 
(s2  a2 )(s2  b2 ) 






1  s2

  1  s s 

Sol: L 
(s2  a2 )(s2  b2 ) 

  L
 
 

s2  2 
. 

2 2 



Let f s 
s 

s2  a2 
and g s 

s 
 

 

s2  b2 

 
So that L1  f (s)  L1 

 s  
 cos at  f (t)  say 

L1 g(s)  L1 
 s  

 cos bt  g(t)  say 

 

 By convolution theorem, we have 

 s s  
t

 

L1 

 2 2 

. 2 2   cos au.cosb(t  u)du 
 

 s   a s  b   0
 

1 
t 

 cos(au  bu  bt)  cos(au  bu  bt) du 
0 

 
1 sin(au  bu  bt) sin(au  bu  bt) 

t

 

 
2 


a  b 


 a  b 

 
1 sin at  sin bt 

 
sin at  sin bt  

 
a sin at  b sin bt 

2  a  b a  b 
 a2  b2 

0 

0 
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t 
4 

 

 
 

s2 

   

4 

4 2 4 

 

 



1 

 3. Use convolution theorem to evaluate L1  1 






 Sol: 

 
L1  1 

 
 
 L1  1 

. 
s 


 


s(s2  4)2 





s(s2  4)2 

  
s2 (s2  4)2 




   

Let f s  


1 and g s  
s2 

s 

s2  4
2

 

 

 

So that L1 g(s)  L1 
 1  

 t  g(t)  say 

L1  f (s)  L1 
 s  

 
t.sin 2t 

 f (t)  say 







L1  s  
 

ts in 2t 


(s2  4)2 

 
4 

 
(s2  a2 )2 





2a 

  1 s  t u 
 L 1  . 

 

 

2 2   


sin 2u(t  u)du 
 

 s (s  4)  0 4 

t 
2 

 u sin 2udu  u 
0 0 

sin 2udu 

 

t 
t    u 1 



  cos 2u  sin 2u 
 0 

1  u2 u 1 
t

 

  
4 
 

2  
cos 2u  

2 
sin 2u  

4 
cos 2u








4. Find 

 

 
L1  1 

 0 

 
 

1 
1 t sin 2t  cos 2t  

16 




(s  2)(s2 1) 






 Sol: L1  1  
 L

1    1   
. 

1 


 


(s  2)(s2 1) 

 
 s  2  s2 1

Let f s 
1 

 
 

s  2 
and g s 

1 
 

 

s2 1 

 
So that L1  f (s)  L1 

 1  
 e2t  f (t)  say 

 

2 

t 



89 
 

 
 

s    

2 

 
 

s2    

1 

L1 g(s)  L1 
 1   

 sin t  g(t)  say 

 

  1 1  
t

 

 L1 

 . 

2    f (u).g(t u) du 
 

(By Convolution theorem) 

 s  2  s  1 0
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5 



 

 
 

s    

1 

 
 

s    

2 

 

t 

  e
2u sin(t u) du 

0 

t 

(or) sinu.e2(tu) du 
0 

 

t 

 e2t sin ue2udu 
0 

 

 e2u 
t
 

 e2t 




 2
2 1 

2 sin u  cos u
0 

 

 

 

 

 

 5. Find 

 

 

 
L1 

 e2t 
1 

e2t 2sin t  cos t  
5 

 
1 
e2t  2sin t  cos t 

1 

1



(s 1)(s  2) 






 Sol: L1  1  
 L

1  1 
.   

1   


 


(s 1)(s  2) 

  
s 1 s  2 




   

Let f s 
1 

 
 

s 1 
and g s  

1 
 

 

s  2 

 
So that L1  f (s)  L1 

 1  
 et  f (t)  say 

 

L1 g(s)  L1 
 1  

 e2t  g(t)  say 

By using convolution theorem, we have 

  1  t 

L 1 
   eue2(t u)du 

 

(s 1)(s 2)  0 

t t  e3u 
t 

1 

  e
2te3udu  e2t  e3udu  e2t      e

2t  et  



0 0 

 

6. Find L1 
 1 






 3 0 
3 

 
s2 (s2  a2 ) 




 Sol: L1  1  
 L

1  1 
. 

1 


 

 
s2 (s2  a2 ) 

  
s2 s2  a2 




   

Let f s 
1 

and g s  
s2 

1 
 

 

s2  a2 

 
 



91 
 

 
 

s2 So that L1  f (s)  L1 
 1  

 t  f (t)  say 
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a 

−1   1          𝑆

 1−
1 

0 

−1 1 𝑆 

0 

0 

L1 g(s)  L1 
 1  

 
1 

sinh at  g(t)  say 

 
s2  a2 

 
a 

By using convolution theorem, we have 

  1  t 1 

L 1 

 2 2 2   u. sinh a(t  u)du 

 

 s (s  a )  0 a 

1 
t 

 u sinh(at  au)du 
0 

 
1 u 

 

sin at  au
t

 

 
a 
 

a coshat  au 
a

2 

 0 
1 t 

cosh(at  at)  0  
1 

[0  sinh at]



= a  a a2 


 
1 t 





 

1 
sinh at 







a  a a2 


 
1 
at  sinh at 

a3 

 

3. Using Convolution theorem, evaluate 𝑳−𝟏{ 𝒔 } 
(𝑺+𝟐)(𝒔𝟐+𝟗) 

Sol: 𝐿 { . } = 𝐿 { . 
𝑆 }=𝐿−1{𝑓(̅  𝑠). �̅� (𝑠)} 

𝑠+2   𝑠2+9 𝑠+2 𝑠2+32 

𝑓(̅  𝑠)=  1   = 𝐿{𝑓(𝑡)} ⇒ 𝑓(𝑡) = 𝐿−1 {
  1   

} = 𝑒−2𝑡----------------- (1) 
𝑠+2 𝑠+2 

�̅�(𝑠)=   𝑠 = 𝐿{𝑔(𝑡)} ⇒ 𝑔(𝑡) = 𝐿−1 {
   𝑠 

} = 𝑐𝑜𝑠3𝑡----------------- (2) 
𝑠2+32 

By Convolution theorem we have 

𝑠2+32 

 

 
Where 𝑓(𝑡) ∗ 𝑔(𝑡) = 

𝐿−1{𝑓(̅  𝑠). �̅� (𝑠)} = 𝑓(𝑡) ∗ 𝑔(𝑡) 

∫
𝑡 

𝑔(𝑢)𝑓(𝑡 − 𝑢)𝑑𝑢 

 
   ∴ 𝐿 { . } = 

𝑡   
𝑒−2(𝑡−𝑢)𝑐𝑜𝑠3𝑢𝑑𝑢 

 
 

𝑠+2 𝑠2+9 ∫0 

= 𝑒−2𝑡 ∫
𝑡 

𝑒2𝑢𝑐𝑜𝑠3𝑢𝑑𝑢 

 

= 𝑒−2𝑡.  
1 

22+32 
[2𝑐𝑜𝑠3𝑢 − 3𝑠𝑖𝑛3𝑢]𝑡 

= 𝑒
−2𝑡 

[2𝑐𝑜𝑠3𝑡 − 2 − 3𝑠𝑖𝑛3𝑡] 
13 
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= 1 [𝑒−2𝑡(2𝑐𝑜𝑠3𝑡 − 3𝑠𝑖𝑛3𝑡)] − 
2𝑒−2𝑡

 

13 13 

Application of L.T to ordinary differential equations: 

 
 

(Solutions of ordinary DE with constant coefficient): 
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1. Step1: Take the Laplace Transform on both the sides of the DE and then by using the 

formula 

L{f n (t)}  snL{f(t)}sn1 f (0) sn1 f 1(0) sn2 f 2 (0)  .............. f n1(0) 

given initial conditions. This gives an algebraic equation. 

and apply 

2. Step2: replace f (0), f 1(0) , f 2 (0) ,……… f n1(0) with the given initial conditions. 

 

Where f 1 0  s f 0 – f 0

f 2 (0)  s2 f s – s f 0  f 1 0 , and so on 

3. Step3: solve the algebraic equation to get derivatives in terms of s. 

 
4. Step4: take the inverse Laplace transform on both sides this gives f as a function of t 

which gives the solution of the given DE 

 
Solved Problems : 

1. Solve y111  2 y11  y1  2 y  0 using Laplace Transformation given that 
 

y(0)  y1(0)  0 and y11(0)  6 

Sol: Given that y111  2 y11  y1  2 y  0 

Taking the Laplace transform on both sides, we get 

L y111(t) 2L y11(t) L y1 2L y  0 

 s3L y(t) s2 y(0)  sy1(0)  y11(0)  2s2L y(t) sy(0)  y1(0)

sL y(t)  y(0) 2L y(t)  0 

 s3  2s2  s  2L y(t)  s2 y(0)  sy1(0)  y11(0)  2sy(0)  2 y1(0)  y(0) 

 0  0  6  2.0  2.0  0 

 s3  2s2  s  2L y(t)  6 
 

L y(t)  
6 

 
6

 
  

s3  2s2  s  2 (s 1)(s 1)(s  2) 

 
A 


s 1 

B 


 

s 1 

C 
 

 

s  2 

 A(s 1)(s  2)  B(s 1)(s  2)  C(s 1)(s 1)  6 

 A(s2  3s  2)  B(s2  s  2)  C(s2 1)  6 

 

Comparing both sides s2,s,constants,we have 

 A  B  C  0, 3A  B  0, 2 A  2B  C  6 
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A  B C  0 

2A  2B C  6 

 

3A  B  6 

3A  B  0 
 
 

6 A  6  A  1 

3A  B  0  B  3A  B  3 

 A B  C  0  C  A B  1 3  2 

L y(t) 
1 




s 1 

3 



s 1 

2 
 

 

s  2 

y(t)  L1 
 1  

 3.L1 
  1   

 2.L1 
  1    

= et  3et  2.e2t 

 
s 1

  
s 1

  
s  2 




Which is the required solution 
 

 

2. Solve y11  3y1  2y  4t  e3t using Laplace Transformation given that 

y 0 1and y1 0  1 
 

Sol: Given that y11  3y1  2y  4t  e3t 

Taking the Laplace transform on both sides, we get 

L{y11(t) 3L y1(t) 2L y(t)  4L t L e3t 

 s2L{y(t) sy(0)  y1(0)  3 sL{y(t) y(0)  2L{y(t) 




4 
 

1 

s2 s  3 

 (s2  3s  2)L{y(t) 
4 
 

1 

s2 s  3 

 

 s  4 

 
 (s2  3s  2)L{y(t)  4s 12  s4  s2  3s3  4s3 12s2 

 
 

2 

 
 L{y(t) 

s 

s4  7s3 13s2  4s 12 
 

 

2 2 

(s  3) 

s (s  3)(s  3s  2) 
 

 L{y(t)  s
4  7s3 13s2  4s 12 

 
 

2 

s (s  3)(s 1)(s  2) 
 

 
s4  7s3 13s2  4s 12 

 
As  B 

   
C   

   
D 

 
E 
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s2 (s  3)(s 1)(s  2) s2 s  3 s 1 s  2 
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s 





 s2 1s2  2s  3 

s 1s  3s 1



 
( As  B)(s 1)(s  2)(s  3)  C(s2 )(s 1)(s  2)  D(s2 )(s  2)(s  3)  E(s2 )(s 1)(s  3) 

s2 (s  3)(s 1)(s  2) 

 s4  7s3 13s2  4s 12  ( As  B)(s3  6s2 11s  6) 

C(s2 )(s2  3s  2)  D(s2 )(s2  5s  6)  E.s2 (s2  4s  3) 

 

Comparing both sides s4,s3,we have 

A  C  D  E  1 ...................... (1) 

6 A  B  3C  5D  4E  7 ...................... (2) 

put s  1, 2D  1  D  
1

 
2 

put s  2,  4E  8  E  2 

 
put s  3,18C  9  C  

1
 

2 

fromeq.(1) A  1 
1 
 

1 
 2  A  3 

2 2 

from eq.(2) B= -7+18+ 
3 
 

5 
 8  3 1  2 

2 2 

y(t)  L1 
3 

 
2 
 

1
 

 
  

 
1 

 
2   


 

 
s2 2(s  3) 2(s 1) 

s  2 



y t   3  2t  
1 

e3t  
1 

et  2.e2t
 

2 2 

 
3. Using Laplace Transform Solve 

d 2 y dy 
2 

 
 3y  sin t, 

 
given that y  

dy 
 0 when t=0 

dt2 dt dt 

d 2 y dy 
Sol: Given equation is 

dt
2 

 
2   3y  sin t. 

dt

L y11 t  2L y1 t  3L y t   L sin t

s2L y t  sy 0  y1 0  2 sL y t  y 0  3.L y t  




1 
 

 

s2 1 

 s2  2s  3L y t  
1 

 
 

s2 1 

 1 

 Ly t    

 

1 
 1 

 y t   L  
 2 
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Now consider 
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1 

s 1s  3s2 1 



A  



s 1 

B 
 

 

s  3 
 

Cs  D
s2 1 

As  3s2 1  B s 1s2 1  Cs  Ds 1s  3  1 

Comparing both sides s3,we have 

put s  1,8A  1  A  
1
 

8 

put s  3,  40B  1  B  
1

 
40 

A  B  C  0  C  0  
1 
 

1
 

8 40 

C  
5 1 

 
4 

 
1 

40 40 10 

3A  B  2C  D  0  D   
3 
 

1 
 

1
 

 

D  
15 1 8 

 
8 

 
1 

40 40 5 

8 40 5 

  1 1 1 
s  

1 

 y t   L1 
 8    40  10 5  

s 1 s  3 s2 1  



 
 

 
1 

L
1   1   

 
1 

 
  

L
1    1    

 
1 

L
1  s 

 
  

 
 

1 
L
1  1 


 

8 
 

s 1
 

40 
 

s  3
   

10 
 

s2 1
 

5 
 

s2 1



       

 y t   
1 

et  1 
e3t 

1 
cos t  

1 
sin t 

 
 

4. Solve 

8 40 10 5 

dx 
 x  sin  t, x 0  2 

dt 

 
Sol: Given equation is 

dx 
 x  sin  t 

dt 

L x1 t  L x t   L sin  t

 s.L x t   x 0  L x t  
    

 
s2  2

 

 s.L x t   2  L x t  
   

 
s2  2

 

 s 1L x t  
    

 2 

s2  2
 



10

0 

 

 

2 

0 

 x t   L1 
    

 
   2  




s 1s2  2  s 1






 2L
1   1   

 L
1 
    

s 1
 

s 1s2  2 



    (By using partial fractions) 

  s  

 2et  L1 
 2 

1  1 2     

 1 2    
  

 
s 1 s2  2 

s2  2  


 
 

 2et  
    

et  
    

cost  
    1 

t 
 

2 
1 1 2

 

. sin 
1  

5. Solve D2  n2  x  a sin nt    given that x=Dx=0, when t=0 

Sol: Given equation is D2  n2  x  a sin nt   

x11 t   n2x t   a sinnt  

L x11 t  n2L x t   L a sin nt cos  a cos nt sin 

 s2Lx t  sx 0  x1 0  n2Lx t   a cosLsin nt a sinLcos nt

 s2  n2 L x t   a cos
n 

s2  n2 

 

 
a sin .

s 
 

 

s2  n2 

 L x t   a cos
n 

s2  n2 
2

 
 

a sin 
s 

s2  n2 
2

 

 

(By using convolution theorem I –part, partial fraction in II-part) 

  na cos t 1 1 a sin 1  d 1 

0  n
.sin nx. 

n 
sin n t  xdx  2 

L  
ds s2  n2 




 

 
a cos 


t 

cos nt  2nx  cos ntdx  
a sin  

t 
1 

sin nt 

2n 0 2 n 

 
a cos 


t 

cos n t  2x  cos ntdx  
 a  

sin t sin nt 



2n 
  0 2n 



a cos  1 
t 

at sin

 
2n 

 2n 
.sin n t  2x  x cos nt 

 
 sin nt 

2n 

 
a cos sin nt 

 t cos nt 
 
 

at sin  
sin nt

 

2n 
   2n 

 2n 
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a cos sin nt 


 at 
cos cos nt  sin  sin nt

2n2 2n 
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2 

 

𝐿 [ ] = 𝐿 [ 

 
a cos sin nt 


 at 

cos  nt 


2n2 2n 

6.  Solve 𝒚𝟏𝟏 − 𝟒𝒚𝟏 + 𝟑𝒚 = 𝒆−𝒕 using L.T given that y (0) = y1 (0) = 1. 

Sol: Given equation is 𝑦11 − 4𝑦1 + 3𝑦 = 𝑒−𝑡 

Applying L.T on both sides we get 𝐿(𝑦11) − 4𝐿(𝑦1) + 3𝐿(𝑦) = 𝐿(𝑒−𝑡) 

⇒ {s2L[y] –s y (0) – y1 (0)} – 4{s L[y] – y (0)} + 3L{y} = 1 
𝑠+1 

⇒ (s2 + 4s +3) L{y} –s-1-4 = 1 
𝑠+1 

⇒ (s2 + 4s +3) L{y} = 1 
𝑠+1 

 

⇒ (s2 + 4s +3) L{y} = 1 

+s +5 
 

+ s + 5 

𝑠+1 

L{y} = 1 
(𝑠+1)(𝑠2+4𝑠+3) 

+ 
𝑠+5 

(𝑠2+4𝑠+3) 

y =𝐿−1[
 1 

] + 𝐿−1[ 
𝑠+5 

] 

Let us consider 

(𝑠+1)(𝑠2+4𝑠+3) (𝑠2+4𝑠+3) 

𝐿−1[
 1 

] = 𝐿−1[
 1 

] 
(𝑠+1)(𝑠2+4𝑠+3) 

1 

(𝑠+1)2(𝑠+3) 

1 

(𝑠 + 1)(𝑠2 + 4𝑠 + 3) 
= 

(𝑠 + 1)2(𝑠 + 3) 

= 
𝐴 

𝑠+1 
+  

𝐵 

(𝑆+1)2 
+   

𝐶 

𝑆+3 

1 1 1 (− ) ( ) ( ) 
   

=    4   + 2 +  4  

𝑠+1 (𝑆+1)2 𝑆+3 
 

1 1 1 (− ) ( ) ( ) 
   

=𝐿−1[ 4    + 2 +   4   ] 
𝑠+1 (𝑆+1)2 𝑆+3 

 
1 1 1 (− ) ( ) ( ) 

   

=𝐿−1[ 4    + 2 +   4   ] 
𝑠+1 (𝑆+1)2 𝑆+3 

=− 
1 

𝐿−1[ 
1

 ] + 
1 

𝐿−1[ 
1

 ] + 
1 

𝐿−1[ 
1   

] 

4 𝑠+1 2 (𝑆+1)2 4 𝑆+3 

𝐿−1 [ 
1 1   

−𝑡 
 

 

1 
−𝑡 

 
 

1 −3𝑡 − −−→ (1) 
 

 

(𝑠 + 1)(𝑠2 + 4𝑠 + 3)
] = − 

4 
𝑒
 

+ 
2 

𝑡𝑒 + 
4 

𝑒 

−1 𝑠+5  −1 𝑠+2 ]+𝐿−1[ 
3 

] 

(𝑠2+4𝑠+3) ((𝑠+2)2−1) 

=𝒆−𝟐𝒕𝐿−1[ 
𝑠 

(𝑠2−1) 

((𝑠+2)2−1) 

]+𝐿−1 + 𝟑𝒆−𝟐𝒕𝐿−1[ 
1 

] 
(𝑠2−1) 

𝐿−1 [
 𝑠+5 

] = 𝒄𝒐𝒔𝒕+𝟑𝒆−𝟐𝒕𝒔𝒊𝒏𝒕 − − −→ (2) 
(𝑠2+4𝑠+3) 
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3 

 

From (1) & (2) 

∴ 𝑦 = − 
1 

𝑒−𝑡 + 
1 

𝑡𝑒−𝑡 + 
1 

𝑒−3𝑡+𝒆−𝟐𝒕𝒄𝒐𝒔𝒕+𝟑𝒆−𝟐𝒕𝒔𝒊𝒏𝒕 
4 2 4 
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7. Solve 𝒅
𝟐𝒙 

+ 𝟗𝒙 = 𝒄𝒐𝒔𝟐𝒕 using L.T. given x (0) =1, x (𝝅) = -1. 
𝒅𝟐𝒕 𝟐 

Sol: Given 𝑥11 + 9𝑥 = 𝑐𝑜𝑠2𝑡 

L [𝑥11] + 9[𝑥] = 𝐿[𝑐𝑜𝑠2𝑡] 

⇒ 𝑠2𝐿[𝑥] − 𝑠𝑥(0) − 𝑥1(0) + 9𝐿[𝑥} = 
𝑠

 
𝑠2+4 

⇒(𝑠2 + 9)𝐿[𝑥] − 𝑠 − 𝑎 = 
𝑠

 
𝑠2+4 

⇒(𝑠2 + 9)𝐿[𝑥]= 𝑠 
𝑠2+4 

+ (𝑠 + 𝑎) 

𝐿[𝑥]= 𝑠 
(𝑠2+4((𝑠2+9) 

+ 
𝑠 

(𝑠2+9) 
+ 

𝑎 

(𝑠2+9) 

 

X= 𝐿−1[  
𝑠 

(𝑠2+4((𝑠2+9) 
] + 𝐿−1[ 

𝑠
 

(𝑠2+9) 
] + 𝐿−1[ 

𝑎 
] 

(𝑠2+9) 

= 1 𝐿−1[ 𝑠 − 
𝑠 

] + 𝑐𝑜𝑠3𝑡 + 
𝑎 

𝑠𝑖𝑛3𝑡 
5 𝑠2+4 𝑠2+9 3 

=1 𝐿−1[ 𝑠   ] − 
1 

𝐿−1[   
𝑠   

] + 𝑐𝑜𝑠3𝑡 + 
𝑎 

𝑠𝑖𝑛3𝑡 
5 𝑠2+4 5 𝑠2+9 3 

=1 𝑐𝑜𝑠2𝑡 − 
1 

𝑐𝑜𝑠3𝑡 + 𝑐𝑜𝑠3𝑡 + 
𝑎 

𝑠𝑖𝑛3𝑡 ------------------→ (1) 
5 5 3 

Given x (𝜋) = -1. 
2 

∴ −1 = 
1 

𝑐𝑜𝑠2 (
𝜋
) − 

1 
𝑐𝑜𝑠 

3𝜋 
+ 𝑐𝑜𝑠 

3𝜋 
+ 𝑐𝑜𝑠 

3𝜋 
+ 𝑎 𝑠𝑖𝑛 

3𝜋
 

5 2 5 2 2 2 3 2 

⇒ -1= - 1 − 0 + 0 − 
𝑎

 
5 3 

𝑎 = − 
1 

+ 1 
3 5 

𝑎 
= 

4 

3 5 

∴ x = 1 𝑐𝑜𝑠2𝑡 + 
4 

𝑐𝑜𝑠3𝑡 + 
4 

𝑠𝑖𝑛3𝑡 From (1) 
5 5 5 

 
 
 
 

𝟖. 𝑺𝒐𝒍𝒗𝒆(𝑫𝟑 − 𝟑𝑫𝟐 + 𝟑𝑫 − 𝟏)𝒚 = 𝒕𝟐𝒆𝒕 Using L.T given y (0) =1,𝒚𝟏 = 𝟎, 𝒚𝟏𝟏(𝟎) = −𝟐 

Sol: Given 𝑦111 − 3𝑦11 + 3𝑦1 − 𝑦 = 𝑡2𝑒𝑡 

𝐿[𝑦111] − 3𝐿[𝑦11] + 3𝐿[𝑦1] − 𝐿[𝑦] = 𝐿[𝑡2𝑒𝑡] 

⇒ {𝑠3𝐿[𝑦] − 𝑠2𝑦(0) − 𝑠𝑦1(0) − 𝑦11(0)} − 3{𝑠2𝐿[𝑦] − 𝑠𝑦1(0) − 𝑦(0)} + 

3{𝑠𝐿[𝑦] − 𝑦(0)} − 𝐿[𝑦] = 𝐿[𝑡2𝑒𝑡] 

𝑑2 

⇒ (𝑠3 − 3𝑠2 + 3𝑠 − 1)𝐿[𝑦] − 𝑠2 − 0 + 2 + 0 + 3(1) − 3(1) = (−1)2 𝐿[𝑒𝑡] 
𝑑𝑠2 

⇒ (𝑠 − 1)3L[y]-𝑠2 + 2 = 
𝑑2   

( 
1   

) 
𝑑𝑠2     𝑠−1 

= 
2 

(𝑠−1)3 

 

⇒ (𝑠 − 1)3L[y] = 2 

(𝑠−1)3 
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+𝑠2 − 2 
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−1     1  1  𝑡 𝑒 𝑡𝑡 
−1  𝑡 

2 𝑠2 2 
𝐿[𝑦] = 

(𝑠 − 1)6 
+ 

(𝑠 − 1)3 
− 

(𝑠 − 1)3 

𝑦 = 𝐿−1[ 
2

 
(𝑠−1)6 

] + 𝐿−1[   
𝑠2

 

(𝑠−1)3 

] − 𝐿−1[ 
2 

] 
(𝑠−1)3 

 
= 2𝐿−1[  

1 

(𝑠−1)6 

] + 𝐿−1[   
𝑠2

 

(𝑠−1)3 

] − 2𝐿−1[ 
1 

] 
(𝑠−1)3 

=2𝑒𝑡𝐿−1 [ 
1

 
(𝑠)6 

] + 𝐿−1 
𝑠2

 

(𝑠−1)3 

− 2𝑒𝑡𝐿−1 [ 
1 

] 
𝑠3 

= 2𝑒𝑡 
𝑡5 

− 2𝑒𝑡 
𝑡2 

+ 𝐿−1 [    
𝑠2      

] 

Consider 𝐿−1 [   
𝑠2      

] 
(𝑠−1)3 

5! 2! (𝑠−1)3 

 

2 𝑡 2 
W.K.T 𝐿 [ ] = 𝑒 𝐿 [   ]=𝑒 = 

 

𝐿−1 [ 

(𝑠−1)3 

𝑠2 

(𝑠 − 1)3
] =

 

 
𝑑2 

 
 

𝑑𝑠2 

𝑠3 

 

𝑒𝑡𝑡2 

(  
2  

) = 

2! 

1 𝑑 
 

 

2 𝑑𝑡 

2 
 

(2𝑡𝑒𝑡 + 𝑡2𝑒𝑡) = 

 
1 

(2𝑒𝑡 + 2𝑡𝑒𝑡 + 2𝑡𝑒𝑡 + 𝑡2𝑒𝑡) 
2 

= 1 (2𝑒𝑡 + 4𝑡𝑒𝑡 + 𝑡2𝑒𝑡) 
2 

∴ 𝑦 = 2𝑒𝑡 
𝑡5 

− 2𝑒𝑡 
𝑡2 

− 
1 

(2𝑒𝑡 + 4𝑡𝑒𝑡 + 𝑡2𝑒𝑡) 
5! 2! 2 
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UNIT – III 

ANALYTIC FUNCTIONS 

Introduction: Complex analysis is the branch of mathematical analysis that investigates 

functions of complex numbers. It is useful in many branches of mathematics, including 

algebraic geometry, number theory, in physics, thermodynamics, and also in engineering fields 

such as aerospace, mechanical and electrical engineering. Complex analysis is widely 

applicable to two dimensional problems in physics. In this unit we discuss about limit, 

differentiation and continuity of complex function and analyticity of a function and also 

complex integration. 

We are familiar with the concepts of limit, continuity,differentiation and integration 

of function of real variable. Similar concepts can be defined with reference to complex 

variables also and their study constitutes “Complex analysis”. A basic understanding of 

complex variable theory will be useful in diverse branches of science and engineering. 

Definitions: 

 
Complex number: A number which is in the form of 𝑧 = 𝑥 + 𝑖𝑦   where 𝑥, 𝑦 ∈ 𝑅 and i2 = - 

1 is called complex number. Here 𝑥 is real part and 𝑦 is imaginary part of 𝑧. 

(or) 

 
A complex number 𝑧 is defined as the ordered pair (𝑥, 𝑦) of real numbers. i.e., 𝑧 = (𝑥, 𝑦) 

 
Set of complex numbers: The complex number set is denoted by ℂ and 

ℂ = {z / z = x+iy, x,y𝜖ℝ, 𝑖2 = −1} ℂ 

= {(x,y), x,y𝜖ℝ, 𝑖2 = −1} 

Argand plane: We have seen that complex numbers are represented by points (𝑥, 𝑦)𝜖 ℝ2 and 

conversely. After this representation ℝ2 is called the Argand plane where (𝑥, 𝑦) = 𝑥 + 𝑖𝑦. After 

this representation the 𝑥 and 𝑦 axes are called real and imaginary axes. 

Modulus of a complex number:The modulus or absolute value of complex number 𝑧 is 

denoted by |𝑧| and it is defined as its distance from the origin. 

 

i.e.,|𝑧| = √𝑥2 + 𝑦2 
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Now x ≤ |𝑥| ≤ √𝑥2 + 𝑦2 , y ≤ |𝑦| ≤ √𝑥2 + 𝑦2 
 

i.e., Rez≤ |𝑧| i.e.,Img z ≤ |𝑧| 

 
Conjugate of a complex number:The conjugate of a complex number𝑧 = 𝑥 + 𝑖𝑦is 

denoted by �̅� and it is defined as the mirror image of 𝑧 in the real axis. 

i.e., �̅� = x – iy [i.e., �̅� = (x,-y) ] 

 
Properties of conjugate: 

 
 �̿�  = z, ∀ 𝑧𝜖ℂ 

 �̅� = 𝑧 ⟺ 𝑧 𝑖𝑠 𝑟𝑒𝑎𝑙 

 ̅�̅�1̅̅+̅̅̅�̅̅�2  = �̅�1 + �̅�2 

 𝑧̅̅1̅̅�̅�2̅ = ̅�̅�1̅�̅�2 

 z +�̅� = 2 Rez ⇒ Rez = 𝑧+�̅� 
2 

 

 z - �̅� = 2 Imgz ⇒ Imgz = 𝑧−�̅� 
2𝑖 

 �̅�1  
= 

𝑧̅̅1̅ , provided 𝑧   ≠ 0 

𝑧2 ̅�̅�2̅ 
2 

 

Properties of modulus: 

 
 |𝑧| ≥ 0 i.e., |𝑧| is always non-negative 

 |𝑧| = |𝑧 = |−𝑧|  = |̅−̅̅�̅�| also Rez ≤  |𝑧|, Imgz ≤  |𝑧| 

 |
𝑧1| =

 |𝑧1| 
, where 𝑧 ≠ 0 

𝑧2 |𝑧2| 2 

 |𝑧|2 = 𝑧 �̅� 

 |𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2| 

 ||𝑧1| − |𝑧2|| ≤ |𝑧1 − 𝑧2| ≤ |𝑧1| + |𝑧2| 

 
 
 

 



10
9 

 

The Polar form or Exponential form of complex number: 
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2 

Let 𝑧 = 𝑥 + 𝑖𝑦 𝑜𝑟 𝑧 = (𝑥, 𝑦) be complex number 
 

 

 

 

 

 

 

 

Here sin 𝜃 = 
𝑦
 
𝑟 

⟹ 𝑦 = 𝑟 sin 𝜃 

 

 

cos 𝜃 = 
𝑥 

𝑟 
⟹ 𝑥 = 𝑟 cos 𝜃 

 

∴ 𝑧 = 𝑥 + 𝑖𝑦 = 𝑟 𝑐𝑜𝑠 𝜃 + 𝑖 𝑟 𝑠𝑖𝑛 𝜃 

 
𝑧 = 𝑟 (𝑐𝑜𝑠 𝜃 + 𝑖 𝑠𝑖𝑛 𝜃) 

𝑍 = 𝑟𝑒𝑖𝜃 , which is a complex number in polar form 

Here 𝑟 = |𝑧| and 𝑡𝑎𝑛𝜃 = 
𝑦 

⟹ 𝜃 = tan−1 (
𝑦
) 

𝑥 𝑥 
 

(𝑟, 𝜃) are called polar coordinates of a point P 

 
 Here 𝜃 is called the argument or amplitude of 𝑧 and denoted by 𝑎𝑟𝑔(𝑧) or 𝑎𝑚𝑝(𝑧) 

 
i.e.,𝑎𝑟𝑔𝑧 = 𝑡𝑎𝑛−1 

𝑦
 

𝑥 
 

 The Specific value of 𝑎𝑟𝑔𝑧, satisfying −𝜋 < 𝑎𝑟𝑔𝑧 < 𝜋 is called the principle value of 

𝑎𝑟𝑔𝑧 

 For any two complex numbers 𝑧1,𝑧2 we have 

 
𝑎𝑟𝑔(𝑧1. 𝑧2) = 𝑎𝑟𝑔𝑧1 + 𝑎𝑟𝑔 𝑧2 

 

𝑧1 
𝑎𝑟𝑔 (

𝑧 
) = 

𝑎𝑟𝑔𝑧1 
 

 

𝑎𝑟𝑔𝑧2 

 

 |𝑧 − 𝑧0| = 𝑟 represents a circle with centre at 𝑧0 and radius 𝑟 

 
Let 𝑧 = (𝑥, 𝑦) and 𝑧0 = (𝑎, 𝑏) 

 
 

|𝑧 − 𝑧0| = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟 
 

⟹ (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2 

 
 |𝑧 − 𝑧0| = 𝑟 ⇔ 𝑧 − 𝑧0 = r𝑒𝑖𝜃, 0 ≤ 𝜃 ≤ 2𝜋 
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- 𝑧 = 𝑧0 + r𝑒𝑖𝜃, 0 ≤ 𝜃 ≤ 2𝜋 

 |𝑧| = 𝑟 represents a circle with centre at origin and radius 𝑟 

 |𝑧| = 𝑟 ⇔  Z = r𝑒𝑖𝜃 , 0 ≤ 𝜃 ≤ 2𝜋 

 
Neighbourhood (or) 𝜹 – Disc around = 𝒛𝟎: 

 
Let 𝑧0𝜖 ℂ and 𝛿 >0 

 
𝑁𝛿(𝑧0) = {𝑧𝜖ℂ|𝑧 − 𝑧0| < 𝛿} is called the 𝛿 – neighbourhood of 𝑧0 

 
Deleted 𝜹 – neighbourhood of 𝒛𝟎: 

 
𝑵𝜹∗(𝒛𝟎) = 𝑁𝛿(𝑧0) - {𝒛𝟎} 

 
= {z𝜖ℂ/0 < |𝑧 − 𝑧0| < 𝛿} 

 
It is known as deleted 𝛿 – neighbourhood of 𝑧0. 

 
Pathwise connected: A non-empty subset ‘S’ of ℂ is said to be pathwise connected or arcwise 

connected, if every pair of points in ‘S’ can joined by a polygond arc which is entirely in ‘S 

i.e., for each pair of points in‘S’ there exists a path joining than which entirely lies 

inside ‘S’. 

Domain:A non-empty open connected set in ℂ is said to be a domain. 

 
Function of a complex variable: Let ‘S’ be a non-empty subset of the argandplane ℂ. A 

function 𝑓: 𝑆 → ℂ is a rule which assigns a unique value 𝑓(𝑧)𝜖 ℂ for each 𝑧 𝜖 S, then we write 

𝑓(𝑧) = 𝑤, 𝑧 𝜖 𝑆 and we say that ‘𝑓’ is a complex valued function at complex variable 𝑧. 

(or) 

Let S ⊆ ℂ, a rule 𝑓:S→ ℂ is called complex function if for every 𝑧 𝜖 S, there exist a 

unique image 𝑓(𝑧) 𝜖 ℂ, we write it as 𝑓(𝑧) = 𝑤, for 𝑧 𝜖 S 



11
2 

 

 
 

Range: The set {𝑓(𝑧) /𝑧 𝜖 𝑆} is called the range of ‘𝑓’ 

 
𝑓(𝑧)can be written as 𝑤 = 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where 𝑧 = 𝑥 + 𝑖𝑦 

 
Here 𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦) are real valued functions of 𝑥, 𝑦 

 
Definition of limit of a complex function: Let 𝑓(𝑧) be a complex function, a complex number 

𝑙𝜖ℂ is said to be a limit of a function 𝑓(𝑧) as 𝑧 tends to 𝑧0. If for every 𝜖 > 0 there exists a 𝛿 > 

0 such that |𝑓(𝑧) − 𝑙| < 𝜖 whenever 0 < |𝑧 − 𝑧0| < 𝛿 

Symbolically we write lim 𝑓(𝑧) = 𝑙 
𝑧→𝑧0 

 

Continuity of complex function:A function 𝑓(𝑧) is said to be continuous at 𝑧 = 𝑧0 

 
If lim 𝑓(𝑧) = 𝑓( 𝑧0) 

𝑧→𝑧0 

 

Derivative of 𝒇(𝒛): Let 𝑓(𝑧) be a given function defined on a nbd of 𝑧0 then 𝑓(𝑧) is said to 

be differentiable at 𝑧 if lim 
𝑓(𝑧0+∆𝑧)−𝑓(𝑧0) 

exists and it is denoted by 𝑓′(𝑧 ) 
0 

∆𝑧→0 ∆𝑧 0 

 

i.e.,𝑓′(𝑧 ) =   lim 
𝑓(𝑧0+∆𝑧)−𝑓(𝑧0) 

0 
∆𝑧→0 ∆𝑧 

 

Taking 𝑧 − 𝑧0 = ∆𝑧 
 

𝑓′(𝑧 ) =   lim 
𝑓(𝑧)−𝑓(𝑧0) 

0 
∆𝑧→0 𝑧−𝑧0 

 

Analytic function:A function 𝑓(𝑧) is said to be analytic at a point 𝑧0, if 𝑓(𝑧) is differentiable 

at every point 𝑧 in the 𝜖 - neighbourhood of 𝑧0. 
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i.e., 𝑓′(𝑧) exist for all 𝑧 such that |𝑧 − 𝑧0| < 𝜖, where 𝜖 > 0 then 𝑓(𝑧) is said to be analytic 

at 𝑧0. 
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Note:𝑓(𝑧) is analytic at 𝑧0 means 

 
(i) 𝑓′(𝑧0) exists 

(ii) 𝑓′(𝑧)exist at every point 𝑧 in a neighbourhood of 𝑧0. 

 
Definition: Let 𝐷 be a domain of complex numbers, if 𝑓(𝑧) is analytic at every 𝑧𝜖𝐷, then 

𝑓(𝑧) is said to be analytic in the domain 𝐷. 

 
Definition:If𝑓(𝑧) is analytic at every point 𝑧 on the complex plane then 𝑓(𝑧) is said to be an 

entire function. 

Properties of analytic function: 

 
 If 𝑓(𝑧) and 𝑔(𝑧) are analytic then 𝑓 ± 𝑔, 𝑓. 𝑔, 

𝑓 
(𝑔 ≠ 0) are also analytic function. 

𝑔 

 Analytic function of an analytic function is analytic 

 An entire function of an entire function is entire 

 Derivative of an analytic function is itself analytic 

 
Cauchy – Riemann (C-R) Equations: 

 
C-R equations are used to test the analyticity of a complex function. 

 
Statement:The necessary and sufficient condition for the derivative of the function 

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) to exist for all values of 𝑧 in domain ℝ are 

 

(i) 
𝜕𝑢  

, 
𝜕𝑢 

, 
𝜕𝑣 , 

𝜕𝑣 
are continuous functions of 𝑥 and 𝑦 in ℝ 

𝜕𝑥     𝜕𝑦   𝜕𝑥 𝜕𝑦 

(ii) 
𝜕𝑢 

= 
𝜕𝑣 

, 
𝜕𝑢 

= - 
𝜕𝑣 

𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥 

These two are called C-R equations. 

 
Note: The converse of above theorem is need not be true. 

 
i.e., even though C-R equations are satisfied by 𝑓(𝑧) but 𝑓(𝑧) may not be differentiable. 

Eg: 𝑓(𝑧) = √|𝑥𝑦| satisfies C-R equations at (0,0) but it is not differential at (0,0) 

 
 
 
 
Laplace operator: The Laplace operator is denoted by ∇2 and defined as 
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∇2= 
𝜕2 

 
 

𝜕𝑥2 

𝜕2 

+ 
𝜕𝑦2 

 

 
⟹ ∇2∅ = 

𝜕2∅ 
 

 

𝜕𝑥2 

𝜕2∅ 
+ 

𝜕𝑦2 

 

Result: If 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is analytic in a domain D, then 𝑢 and 𝑣 satisfy laplace 

equation. 

i.e.,∇2𝑢 = 0 𝑎𝑛𝑑 ∇2𝑣 = 0 

 
i.e., 𝜕

2𝑢 
+ 

𝜕2𝑢 
= 0 and 𝜕

2𝑣 
+ 

𝜕2𝑣 
= 0 

𝜕𝑥2 𝜕𝑦2 𝜕𝑥2 𝜕𝑦2 

 

and𝑢 and 𝑣 have continuous second order partial derivatives in D. 

 
Harmonic function:The function which satisfy the Laplace equation is called harmonic 

function. 

i.e., funtion ∅ is said to be Harmonic if ∇2∅ = 0 

 
i.e.,𝜕

2∅ 
+ 

𝜕2∅ 
= 0 

𝜕𝑥2 𝜕𝑦2 

 

Note:If𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is analytic in a domain D, the 𝑢 and 𝑣 satisfy the 

Laplacce equation 

i.e., ∇2𝑢 = 0 𝑎𝑛𝑑 ∇2𝑣 = 0 and we have continuous second order partial derivatives in D. 

 
Conjugate Harmonic function:Two harmonic funtions𝑢 and 𝑣 are said to be harmonic 

conjugate to each other if 

(i) 𝑢 and 𝑣 satisfy the C-R equations 

(ii) 𝑢 and 𝑣 are real and imaginary parts of analytic function 𝑓(𝑧) 

i.e.,𝑓(𝑧) = 𝑢 + 𝑖𝑣 

 
Polar form of C-R equations:If𝑓(𝑧) = 𝑓(𝑟𝑒𝑖𝜃) = 𝑢(𝑟, 𝜃) + 𝑖𝑣(𝑟, 𝜃) and 𝑓(𝑧) is derivable 

at 𝑧   = 𝑟 𝑒𝑖𝜃0 then 𝜕𝑢 = 
1 𝜕𝑣 

and 𝜕𝑣 = − 
1 𝜕𝑢

 
    

0 0 𝜕𝑟 𝑟 𝜕𝜃 𝜕𝑟 𝑟 𝜕𝜃 
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Problems: 
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1. Show that 𝒇(𝒛) = 𝒙𝒚 + 𝒊𝒚 is everywhere continuous but it is not analytic. 

 
Sol. To prove 𝑓 is continuous it is enough to prove that lim 𝑓(𝑧) = 𝑓( 𝑧0) 

𝑧→𝑧0 

 

Let 𝑧0 is any point in the domain 

 
Now lim 𝑓(𝑧) = lim 𝑥0𝑦0 + 𝑖𝑦0 

𝑧→𝑧0 𝑍→𝑧0 

 

Now f(𝑧0) = 𝑥0𝑦0 + 𝑖𝑦0 

 
∴ lim 𝑓(𝑧) =f(𝑧0) 

𝑧→𝑧0 

 

Therefore 𝑓 is continuous every where 

Verification of Analyticity of 𝑓(𝑧): 

Given 𝑓(𝑧) = 𝑥𝑦 + 𝑖𝑦 = 𝑢 + 𝑖𝑣 

⟹ 𝑢 = 𝑥𝑦, 𝑣 = 𝑦 

 
Now 𝜕𝑢 = y,𝜕𝑢 = 𝑥 ,𝜕𝑣 = 0 , 

𝜕𝑣 
= 1 

𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 

 

Clearly 𝜕𝑢 ≠ 
𝜕𝑣

and 
𝜕𝑢 

≠ − 
𝜕𝑣 

𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥 

 

Here 𝑓(𝑧) is not satisfying the C-R equations 

Therefore 𝑓(𝑧) is not analytic. 

2. Show that 𝒇(𝒛)  =  𝒛 + 𝟐�̅� is not analytic anywhere in the complex plane? 

 
Sol. Given𝑓(𝑧) = 𝑧 + 2�̅� = (𝑥 + 𝑖𝑦) + 2(𝑥 − 𝑖𝑦) = 3𝑥 – 𝑖𝑦 

 
But 𝑓(𝑧) = 𝑢 + 𝑖𝑣 

 
Therefore 𝑢 = 3𝑥 and 𝑣 = −𝑦 

 
𝜕𝑢 = 3,𝜕𝑢 = 0 ,𝜕𝑣 = 0 , 

𝜕𝑣 
= −1 

𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 

 

Therefore 𝜕𝑢 ≠ 
𝜕𝑣

and 
𝜕𝑢 

≠ − 
𝜕𝑣 

𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥 

 

C-R equations are not satisfied. 
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Therefore 𝑓(𝑧) is not analytic anywhere. 
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3. Prove that ( 𝝏
𝟐

 

𝝏𝒙𝟐 

+ 
𝝏𝟐 

)|𝑹𝒆𝒂𝒍 𝒇(𝒛)|𝟐 = 2|𝒇,(𝒛)|𝟐 where 𝒘 = 𝒇(𝒛) is analytic? 
𝝏𝒚𝟐 

 

Sol: Given 𝑓(𝑧) is analytic 

 
𝑓(𝑧) = 𝑢 + 𝑖𝑣 

 
Real part of 𝑓(𝑧) = 𝑢 

 
|𝑅𝑒𝑎𝑙 𝑓(𝑧)| = |𝑢| = 𝑢 ⟹ |𝑅𝑒𝑎𝑙 𝑓(𝑧)|2 = 𝑢2 

 

Now L.H.S = ( 𝜕
2

 

𝜕𝑥2 

+ 
𝜕2 

)|𝑅𝑒𝑎𝑙 𝑓(𝑧)|2 
𝜕𝑦2 

 

= ( 𝜕
2

 

𝜕𝑥2 

+  
𝜕2 

) 𝑢2 
𝜕𝑦2 

 

= 
𝜕2𝑢2  

+ 
𝜕2𝑢2 

……………….(1) 

𝜕𝑥2 𝜕𝑦2 

 

Now 𝜕 (𝑢2) = 2u 𝜕𝑢 
𝜕𝑥 𝜕𝑥 

 

𝜕2 (𝑢2) =   
𝜕  

[ 
𝜕  

(𝑢2)] =  
𝜕  

[2u 
𝜕𝑢

] 
 

    

𝜕𝑢  2 
 

 

𝜕2𝑢
]  ………..(2) 

 
 

𝜕𝑥2 𝜕𝑥 𝜕𝑥 𝜕𝑥 𝜕𝑥 
=  2 [( ) 

𝜕𝑥 + 𝑢 
𝜕𝑥2 

 

𝜕2 (𝑢2) =   
𝜕  

[ 
𝜕  

(𝑢2)] =  
𝜕  

[2u 
𝜕𝑢

] 
 

    

𝜕𝑢  2 
 

 

𝜕2𝑢
]  ………..(3) 

 
 

𝜕𝑦2 𝜕𝑦 𝜕𝑦 𝜕𝑦 𝜕𝑦 
= 2 [( ) 

𝜕𝑦 + 𝑢 
𝜕𝑦2 

 

Substitute equation (2) and (3) in (1) 

 
Then L.H.S = 2 [𝑢 (

𝜕2𝑢 
+ 

𝜕2𝑢
 

 
  

 

 
𝜕𝑢 2 
 

 

 

 
𝜕𝑢 2 

 
 

𝜕𝑥2 𝜕𝑦2) + (
𝜕𝑥

) + ( ) ] 
𝜕𝑦 

 

Since 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic 

 
𝑢is a real part of analytic function 𝑓(𝑧) 

 
Therefore 𝑢 is Harmonic function 

 
i.e., 𝑢 satisfies Laplace equation⟹ 

𝜕2𝑢 
+ 

𝜕2𝑢 
= 0 

 

 Therefore L.H.S 

 
 

𝜕𝑢 2 

 
  
 

 
𝜕𝑢 
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𝜕𝑥2 

 
2 

𝜕𝑦2 

= 2 [( ) 
𝜕𝑥 

+ ( ) ] 
𝜕𝑦 

 

Now R.H.S = 2|𝑓,(𝑧)|2 

 
And 𝑓(𝑧) = 𝑢 + 𝑖𝑣 ⟹ 𝑓,(𝑧) = 

𝜕𝑢 
+ 𝑖 

𝜕𝑣
 

𝜕𝑥 𝜕𝑥 
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Since 𝑓(𝑧) is analytic ⟹ it will satisfy C-R equations 

 
i.e., 𝜕𝑢 = 

𝜕𝑣 
, 𝜕𝑢 = - 𝜕𝑣 

𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥 

 

Therefore 𝑓,(𝑧) = 
𝜕𝑢 

−i𝜕𝑢 
𝜕𝑥 𝜕𝑦 

 
 

 

⟹ |𝑓,(𝑧)| = √( 
𝜕𝑢 2 

𝜕𝑥
)
 

𝜕𝑢  2 
+ (

𝜕𝑦
) 

 
 

⟹ |𝑓,(𝑧)|2 = ( 
𝜕𝑢 2 

𝜕𝑥
)
 

𝜕𝑢  2 
+ (

𝜕𝑦
) 

 

Therefore R.H.S 
 

= 2 ( 
𝜕𝑢  2 

) 
𝜕𝑥 

+ (
𝜕𝑢

) 
𝜕𝑦 

 

Therefore L.H.S = R.H.S 
 

4. Show that ( 𝝏
𝟐

 

𝝏𝒙𝟐 

+ 
𝝏𝟐 

)𝒍𝒐𝒈|𝒇,(𝒛)|= 0, where 𝒇(𝒛) is an analytic function? 
𝝏𝒚𝟐 

 

Sol: Let 𝑧 = 𝑥 + 𝑖𝑦, �̅� = 𝑥 − 𝑖𝑦 
 

We know that 𝑧 + ̅𝑧 = 2𝑥 ⟹ 𝑥 =   
𝑧 + ̅𝑧

 
2 

 

 

𝑧 − ̅𝑧 
 

= 2𝑖𝑦 ⟹ 𝑦 = 
𝑧 − ̅𝑧 

2𝑖 

𝑖 
= − 

2
 

 

(𝑧 − ̅𝑧) 

 

Let 𝑓 = 𝑓(𝑥, 𝑦) ⟹ 𝑓(𝑧 , �̅�) 
 

Now 
𝜕𝑓 

= 
𝜕𝑓 

(
𝜕𝑥

) + 
𝜕𝑓 

(
𝜕𝑦

) = 
𝜕𝑓 

(
1
) + 

𝜕𝑓 
(

−𝑖
) = 

1 
( 

𝜕 − 𝑖 
𝜕 

) 𝑓 

𝜕𝑧 𝜕𝑥 𝜕𝑧 𝜕𝑦 𝜕𝑧 𝜕𝑥    2 𝜕𝑦 2 2  𝜕𝑥 𝜕𝑦 

 
𝜕𝑓 

= 
𝜕𝑓 𝜕𝑥 

+ 
𝜕𝑓 𝜕𝑦 

= 
𝜕𝑓 

(
1
)+ 

𝜕𝑓 
(

𝑖
) = 

1 
( 

𝜕 + 𝑖 
𝜕 

) 𝑓 

𝜕𝑧 𝜕𝑥 𝜕𝑧 𝜕𝑦 𝜕𝑧 𝜕𝑥    2 𝜕𝑦   2 2    𝜕𝑥 𝜕𝑦 

 

𝜕2𝑓 
= 

𝜕  𝜕𝑓 
= 

1 
( 

𝜕 − 𝑖 
𝜕 

) . 
1 

( 
𝜕
 + 𝑖 

𝜕 
)  = 

1 
( 𝜕

2

 + 
𝜕2 

)f 

𝜕𝑧𝜕𝑧 𝜕𝑧 𝜕𝑧 2    𝜕𝑥 𝜕𝑦 2    𝜕𝑥 𝜕𝑦 4    𝜕𝑥2 𝜕𝑦2 

 

2 
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⟹ ( 𝜕
2

 
+  

𝜕2 

) = 4   
𝜕2

 
…………….(1) 

𝜕𝑥2 𝜕𝑦2 𝜕𝑧𝜕𝑧̅ 

 

Hence ( 𝜕
2

 + 
𝜕2 

)𝑙𝑜𝑔|𝑓,(𝑧)| = 4   
𝜕2

 𝑙𝑜𝑔|𝑓,(𝑧)| [from equation (1)] 

𝜕𝑥2 𝜕𝑦2 𝜕𝑧𝜕𝑧̅ 

 

= 4  
𝜕2

 

𝜕𝑧𝜕𝑧 
. 

1 
. 𝑙𝑜𝑔|𝑓,(𝑧)|2 

2 
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𝜕2 

= 2 
𝜕𝑧𝜕𝑧 

𝑙𝑜𝑔(𝑓′(𝑧)̅�̅̅�′ ̅(̅�̅̅�)) 

 

𝜕2 

= 2 
𝜕𝑧𝜕𝑧 

 
[log 𝑓′(𝑧) + log 𝑓′(𝑧)̅  ] 

 

𝜕  𝑓′′(𝑧̅) 𝜕  𝑓′′(𝑧) 
=  2 [ 

′    ̅  + ′ ] 
𝜕𝑧 𝑓 (𝑧) 𝜕�̅� 𝑓 (𝑧) 

 

= 2 (0 + 0) = 0 

 
5. Show that the function 𝒖(𝒙, 𝒚) = 𝒙𝟑 − 𝟑𝒙𝒚𝟐 is harmonic and find its harmonic 

conjugate 𝒗(𝒙, 𝒚) and the analytic function 𝒇(𝒛) = 𝒖 + 𝒊𝒗? 

Sol: Given 𝑢(𝑥, 𝑦) = 𝑥3 − 3𝑥𝑦2 

 
𝜕𝑢 = 3𝑥2 − 3𝑦2 and 𝜕𝑢 = −6𝑥𝑦 
𝜕𝑥 𝜕𝑦 

 
𝜕2𝑢 

= 6𝑥and𝜕
2𝑢 

=  −6𝑥 
𝜕𝑥2 𝜕𝑦2 

 

𝜕2𝑢 
+ 

𝜕2𝑢 
=  0

 
𝜕𝑥2 𝜕𝑦2 

 

Therefore 𝑢 is Harmonic function. 

 
Milne – Thomson’s method:Given𝑢(𝑥, 𝑦) = 𝑥3 − 3𝑥𝑦2 ⟹ 

𝜕𝑢 
= 3𝑥2 − 3𝑦2 and 

𝜕𝑥 
 

𝜕𝑢 

𝜕𝑦 
= −6𝑥𝑦 

Let 𝑣(𝑥, 𝑦) be the harmonic conjugate of 𝑢 

 
Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 

 

Differentiate with respect to 𝑥  
𝑓′(𝑧)   = 

𝜕𝑢
 

𝜕𝑥 

 

 
𝜕𝑣 

+ 𝑖 
𝜕𝑥

 

 

=   
𝜕𝑢    

–   𝑖 
𝜕𝑢 (from C-R equations , we have𝜕𝑢 = 

𝜕𝑣
 , 

𝜕𝑢 
= − 

𝜕𝑣 
)
 

𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥 

 

= (3𝑥2 − 3𝑦2) – i (−6𝑥𝑦) 
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= (3𝑥2 − 3𝑦2) + i (6xy) 
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Now replace 𝑥 by 𝑧 and 𝑦 by 0 

 
𝑓′(𝑧) = 3𝑧2 

 
Integrate on both sides, 

 
𝑓(𝑧) = 𝑧3 + 𝑐 

 
= (𝑥 + 𝑖𝑦)3 + 𝑐 

 
= 𝑥3 − 𝑖𝑦3 + 3𝑥2(𝑖𝑦) − 3𝑥𝑦2 + 𝑐 

 
𝑓(𝑧) = (𝑥3 − 3𝑥𝑦2) + 𝑖 (3𝑥2𝑦 − 𝑦3) + 𝑐 

 
𝑓(𝑧) = 𝑢 + 𝑖𝑣 

 
Therefore 𝑢 = 𝑥3 − 3𝑥𝑦2 and 𝑣 = 3𝑥2𝑦 − 𝑦3 

 
Hence 𝑣 is the Harmonic conjugate of 𝑢. 

 
Constuction of analytic function whose real (or) imaginary part is known: 

 
Let 𝑢(𝑥, 𝑦) be a harmonic function then there exists a harmonic conjugate 𝑣(𝑥, 𝑦) and 

𝑢(𝑥, 𝑦) such that 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic 

 
Problems: 

 
1.Find most general analytic (regular) function whose real part is 

𝒖 = 𝒆𝒙[(𝒙𝟐 − 𝒚𝟐) 𝐜𝐨𝐬 𝒚 − 𝟐𝒙𝒚 𝐬𝐢𝐧 𝒚] 

 
Sol: Let 𝑓(𝑧) = 𝑢 + 𝑖𝑣 be analytic function 

Differentiate with respect to 𝑥, 

𝑓′(𝑧) = 𝜕𝑢 + i 𝜕𝑣 
𝜕𝑥 𝜕𝑥 

 

= 
𝜕𝑢 

– i 
𝜕𝑢 (from C-R equations , 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝜕𝑢 
= 

𝜕𝑣 
, 𝜕𝑢 = - 𝜕𝑣 ) 

𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥 

 
𝜕𝑢 

= 𝑒𝑥[(𝑥2 − 𝑦2) cos 𝑦 − 2𝑥𝑦 sin 𝑦] + 𝑒𝑥[2𝑥 cos 𝑦 − 2𝑦 sin 𝑦] 
𝜕𝑥 

 
𝜕𝑢 

= 𝑒𝑥[−2𝑦 cos 𝑦 + (𝑥2 − 𝑦2)(− sin 𝑦) − 2𝑥 sin 𝑦 − 2𝑥𝑦 cos 𝑦] 
𝜕𝑦 
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𝑟 

∴ 𝑓′(𝑧) = 𝑒𝑥[(𝑥2 − 𝑦2) cos 𝑦 − 2𝑥𝑦 sin 𝑦 + 2𝑥 cos 𝑦 − 2𝑦 sin 𝑦] 

− 𝑖 𝑒𝑥[−2𝑦 cos 𝑦 + (𝑦2 − 𝑥2) sin 𝑦 − 2𝑥 sin 𝑦 − 2𝑥𝑦 cos 𝑦] 

 
By Milne’s Thomson method, replace 𝑥 by 𝑧 and 𝑦 by 0 

 
Hence 𝑓′(𝑧) = 𝑒𝑧[𝑧2 + 2𝑧] 

 
Now integrate on both sides, 

 
𝑓(𝑧) = 𝑒𝑧𝑧2 + 𝑐 

 
= 𝑒𝑥+𝑖𝑦(𝑥 + 𝑖𝑦)2 = 𝑒𝑥𝑒𝑖𝑦[(𝑥2 − 𝑦2) + 𝑖2𝑥𝑦] 

 
= 𝑒𝑥(cos 𝑦 + 𝑖 sin 𝑦)[(𝑥2 − 𝑦2) + 𝑖2𝑥𝑦] 

 
= 𝑒𝑥[(𝑥2 − 𝑦2) cos 𝑦 − 2𝑥𝑦 sin 𝑦] + 𝑖𝑒𝑥[(𝑥2 − 𝑦2) sin 𝑦 + 2𝑥𝑦 cos 𝑦] 

 
𝑓(𝑧) = 𝑢 + 𝑖𝑣 

 
Where 𝑢 = 𝑒𝑥[(𝑥2 − 𝑦2) cos 𝑦 − 2𝑥𝑦 sin 𝑦] and 𝑣 = 𝑒𝑥[(𝑥2 − 𝑦2) sin 𝑦 + 2𝑥𝑦 cos 𝑦] 

 
Therefore 𝑣 is harmonic conjugate of 𝑢 

 
2.Find the analytic function 𝒇(𝒛) = 𝒖 + 𝒊𝒗 if 𝒖 = 𝒂(𝟏 + 𝐜𝐨𝐬 𝜽)? 

 
Sol: Given 𝑢 = 𝑎(1 + cos 𝜃) 

 
Differentiate with respect to 𝜃 𝑎𝑛𝑑 𝑟, we get 

 

𝜕𝑢 
= 𝑢

 
𝜕𝜃 

= −𝑎 sin 𝜃, 𝜕𝑢 =   𝑢   = 0 
𝜕𝑟 

 

The Cauchy-Riemann equations in polar coordinates are 𝜕𝑢 = 
1 𝜕𝑣 

and 𝜕𝑣 = − 
1 𝜕𝑢

 
𝜕𝑟 𝑟 𝜕𝜃 𝜕𝑟 𝑟 𝜕𝜃 

 

𝜕𝑣 𝜕𝑢 

 
 
Therefore 𝜕𝑣 

𝜕𝑟 

 
 
= 

1 
(𝑎 sin 𝜃) 

𝑟 

⟹ 𝑟 
𝜕𝑟 

= − 
𝜕𝜃 

= 𝑎 sin 𝜃 

 

Integrating with respect to 𝑟, 

 
𝑣(𝑟, 𝜃) = 𝑎 sin 𝜃. log 𝑟 + 𝑐(𝜃) ...................... (1) 

 
Differentiating (1) w.r.t. 'θ’, we get 

 

𝜃 
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𝜕𝑣 = 𝑎 cos 𝜃 . log 𝑟 + 
𝑑𝑐 

= 𝑟 
𝜕𝑢 

= 𝑟.0 ⟹ 
𝑑𝑐 

= − 𝑎 cos 𝜃 . log 𝑟 
𝜕𝜃 𝑑𝜃 𝜕𝑟 𝑑𝜃 
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Again integrating, we get 

 
𝑐(𝜃) = 𝑎 sin 𝜃 log 𝑟 + 𝑐1, Where 𝑐1 is a constant. 

Substituting 𝑐(𝜃) in equation (1), we get 

𝑣(𝑟, 𝜃) = 𝑎 sin 𝜃. log 𝑟 + 𝑎 sin 𝜃 log 𝑟 + 𝑐1 = 2𝑎 sin 𝜃 log 𝑟 + 𝑐1 

 
Therefore 𝑓(𝑧) = 𝑢 + 𝑖𝑣 = 𝑎(1 + cos 𝜃 + 2 sin 𝜃 log 𝑟) + 𝑐1 

 
3.If𝒇(𝒛) = 𝒖 + 𝒊𝒗 is an analytic function of 𝒛 and if 𝒖 – 𝒗 = 𝒆𝒙(𝐜𝐨𝐬 𝒚 − 𝐬𝐢𝐧 𝒚) then 

find 𝒇(𝒛) in terms of 𝒛? 

Sol: Given 𝑢 – 𝑣 = 𝑒𝑥(cos 𝑦 − sin 𝑦) ..................... (1) 

 
Differentiate equation (1) partially w.r.to 𝑥 

 
𝜕𝑢 − 

𝜕𝑣 
= 𝑒𝑥(cos 𝑦 − sin 𝑦) ...................................... (2) 

𝜕𝑥 𝜕𝑥 

 

Again differentiate equation (1) partially w.r.to 𝑦 

 
𝜕𝑢 − 

𝜕𝑣 
= 𝑒𝑥(−cos 𝑦 − sin 𝑦) = −𝑒𝑥(cos 𝑦 + sin 𝑦) ............... (3) 

𝜕𝑦 𝜕𝑦 

 

Since 𝑓(𝑧) is analytic 

Therefore it satisfies C-R equations 

i.e., 𝜕𝑢 = 
𝜕𝑣 

, 𝜕𝑢 = − 
𝜕𝑣

 
𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥 

 

equation (3) ⟹ 
𝜕𝑢 

+   
𝜕𝑣 

= 𝑒𝑥(cos 𝑦 + sin 𝑦) ..................... (4) 
𝜕𝑥 𝜕𝑥 

 

equation (2) + equation (4) ⟹ 
𝜕𝑢 

= 𝑒𝑥 cos 𝑦 
𝜕𝑥 

 

equation (4) – equation (2) ⟹ 
𝜕𝑣 

= 𝑒𝑥 sin 𝑦 
𝜕𝑥 

 

Now 𝑓′(𝑧) = 
𝜕𝑢 

+ 𝑖 
𝜕𝑣 

= 𝑒𝑥 cos 𝑦 + 𝑖𝑒𝑥 sin 𝑦 
𝜕𝑥 𝜕𝑥 

 

= 𝑒𝑥 (cos 𝑦 + 𝑖 sin 𝑦) = 𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑧 by integrating we get 𝑓(𝑧) = 𝑒𝑧 + 𝑐 

 
COMPLEX INTEGRATION 

 
Introduction: Here we discuss the idea of line integral of a complex valued function 𝑓(𝑧) of 

a complex variable 𝑧 in a simple way. It is intresting to note that some definite integrals 
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involving real variables can be evaluated simply using the integral theory of complex variables 

and also we discuss Cauchy’s integral theorem and their applications. 

Piecewise continuous : real valued function ‘ 𝑓 ’ is said to be piecewise continuous on [𝑎, 𝑏], 

if [𝑎, 𝑏] can be divided into a finite number of subintervals in which the function is continuous. 

Continuous Arc: A set of points (𝑥, 𝑦) , 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡)(𝑎 ≤ 𝑡 ≤ 𝑏)where 𝑥(𝑡), 

𝑦(𝑡)continuous functions of the real variable are‘𝑡’ is called a continuous arc. 

 
Path:A continuous complex valued function ′𝛾′ defined on [𝑎, 𝑏] is called a path (or) arc in the 

argand plane 

Where 𝛾(𝑡) = 𝑥(𝑡) + 𝑖 𝑦(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏 

 
Note:A path is closed if 𝛾(𝑎) = 𝛾(𝑏) 

 
Simple Path (Zordan Arc):A path is said to be simple if it does not intersect itself 

i.e., 𝛾(𝑡1) ≠ 𝛾(𝑡2) for any 𝑡1, 𝑡2𝜖(𝑎, 𝑏) 

Smooth Path:The path 𝛾(𝑡) = 𝑥(𝑡) + 𝑖 𝑦(𝑡), 𝑡𝜖(𝑎, 𝑏) is said to be smooth, if 𝑥′(𝑡), 𝑦′(𝑡) 

are continuous and donot vanish simultaneously for any value of ‘𝑡’. 

 
Piecewise smooth:A path 𝛾 is said to be piecewise smooth if thereexists a partition ‘P’ of [𝑎, 

𝑏] thereexists 𝑎 = 𝑡1 < 𝑡2 < ⋯ … … < 𝑡𝑛−1 < 𝑡𝑛 = 𝑏 and 𝛾 is smooth on each subinterval 

[𝑡𝑖−1, 𝑡𝑖], 1 ≤ 𝑖 ≤ 𝑛. 

Note:For a piecewise smooth 𝛾′(𝑡) exist at 𝑡0,𝑡1,………… 𝑡𝑛also at 𝑡0,𝑡1, .......... 𝑡𝑛 the right and left 

derivative exist but may not be equal at these points, we define 𝛾(𝑡𝑖) = 0, 1 ≤ 𝑖 ≤ 𝑛 

 
Contour: A piecewise smooth curve is called contour. If a contour is closed and does not 

intersect itself, it is called a closed contour. 

Note: The length of the contour is sum of lengths of the smooth arcs constituting the contour. 

 
Contour integration: Let 𝑓(𝑧) be a piecewise continuous function defined on a contour 

𝛾(𝑡) = 𝑥(𝑡) + 𝑖 𝑦(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏   then the integral of 𝑓(𝑧)   along 𝛾(𝑡)   is define by 

∫   𝑓(𝑧)𝑑𝑧 = 
𝑏 

𝑓[𝛾(𝑡)]. 𝛾′(𝑡)𝑑𝑡 
𝛾 

∫
𝑎 

 

This integral is called a contour (or) complex integral 
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Note: Re∫𝛾 
𝑓(𝑧)𝑑𝑧    ≠ ∫𝛾 𝑅𝑒 𝑓(𝑧)𝑑𝑧 

 

Line integral: Let 𝑓(𝑧) be a function of complex variable defined in a domain D. Let C be 

an arc in the domain joining from 𝑧 = 𝛼to 𝑧 = 𝛽. Let C be defined by 𝑥 = 

𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏 

 
Where 𝛼 = 𝑥(𝑎) + 𝑖𝑦(𝑎)and 𝛽 = 𝑥(𝑏) + 𝑖𝑦(𝑏). 

 
Let 𝑥(𝑡), 𝑦(𝑡) be having continuous first order derivatives in [𝑎, 𝑏]. We define 

 

𝑏 

∮ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑓[𝑥(𝑡) + 𝑖𝑦(𝑡)][𝑥(𝑡) + 𝑖𝑦(𝑡)]𝑑𝑡 

𝑎 
 

Problems: 

 
1. Evaluate   ∫(𝟐𝒚 + 𝒙𝟐)𝒅𝒙 + (𝟑𝒙 − 𝒚)𝒅𝒚   along   the   parabola 𝒙 = 𝟐𝒕, 𝒚 = 𝒕𝟐 + 𝟑 

joining (𝟎, 𝟑) and (𝟐, 𝟒). 

 
Sol: At 𝑥 = 0, 𝑦 = 3, 𝑡 = 0 𝑎𝑛𝑑 𝑎𝑡 𝑥 = 2, 𝑦 = 4, 𝑡 = 1 

 
Substituting for 𝑥 and 𝑦 in terms of 𝑡, we get 

 

1 1 

𝐼 = ∫[2(𝑡2 + 3) + 4𝑡2] 2𝑑𝑡 +   ∫[6𝑡 − 𝑡2 − 3]2𝑡𝑑𝑡 

𝑡=0 𝑡=0 

 

1 

= ∫(24𝑡2 − 2𝑡3 − 6𝑡 + 12)𝑑𝑡 

0 

 

= [
24𝑡3 

3 
− 

2𝑡4 

4 
− 

6𝑡2 

2 

1 

+ 12𝑡] 
0 

= 8 + 12 − 
1

 
2 

 

− 3 = 
33

.
 

2 

 

2. Evaluate ∮(𝒙 + 𝒚)𝒅𝒙 + 𝒙𝟐𝒚𝒅𝒚 along 𝒚 = 𝟑𝒙 between (𝟎, 𝟎) 𝒂𝒏𝒅 (𝟑, 𝒂)? 

 
Sol: Let 𝐼 denote the given integral 

Since 𝑦 = 3𝑥 ⟹ 𝑑𝑦 = 3𝑑𝑥 

Substituting for y and dy in terms of 𝑥, we have 
 

3 3 

𝑥2 𝑥4    3 

𝐼 = ∫(𝑥 + 3𝑥)𝑑𝑥 + 𝑥2(3𝑥)(3𝑑𝑥) = ∫(4𝑥 + 9𝑥3)𝑑𝑥 = (4. 
2 + 9. 

4 
) 



13
1 

 

0 0 0 



13
2 

 

𝟎 

0 

(0,0) 

𝑂𝐵 

𝑂𝑐 

𝟏−𝒊 

= 2(9) + 
9 

(81) 
4 

 

 

= 18 + 
729 

4 
= 

801 
 

 

4 

 

3. Evaluate ∫
𝟏+𝒊

(𝒙𝟐 − 𝒊𝒚)𝒅𝒛 along the paths (𝒊)𝒚 = 𝒙 (𝒊𝒊)𝒚 = 𝒙𝟐 

 

Sol: (𝑖) Along OB whose equation is 𝑦 = 𝑥 ⟹ 𝑑𝑦 = 𝑑𝑥 and 𝑥 varies from 0 to 1 
 

Therefore ∫
1+𝑖

(𝑥2 − 𝑖𝑦)𝑑𝑧 = ∫
(1,1)

(𝑥2 − 𝑖𝑦)(𝑑𝑥 + 𝑖𝑑𝑦) 

 

Therefore ∫   (𝑥2 − 𝑖𝑦)𝑑𝑧 = 
1 

∫
𝑥=0 

 
1 

(𝑥2 − 𝑖𝑥)(𝑑𝑥 + 𝑖𝑑𝑥) 
 
 
 

𝑥3 

 

 
𝑥2 1 

= (1 + 𝑖) ∫(𝑥2 − 𝑖𝑥)𝑑𝑥 = (1 + 𝑖) [ 
3 

0 

− 𝑖 
2 

] 
0 

 

= (1+i) [
1 

− 
𝑖 
] 

3 2 

 

(𝑖𝑖)Along the parabola whose equation is 𝑦 = 𝑥2 ⟹ 𝑑𝑦 = 2𝑥𝑑𝑥 

 
Now ∫

1+𝑖
(𝑥2 − 𝑖𝑦)𝑑𝑧 = ∫

(1,1)
(𝑥2 − 𝑖𝑦)(𝑑𝑥 + 𝑖𝑑𝑦) 

0 (0,0) 

 

Therefore ∫   (𝑥2 − 𝑖𝑦)𝑑𝑧 = 
1 

∫
𝑥=0 (𝑥2 − 𝑖𝑥2)(𝑑𝑥 + 𝑖2𝑥𝑑𝑥) 

 

1 

= (1 − 𝑖) ∫ 𝑥2(1 + 2𝑖𝑥)𝑑𝑥 

𝑥=𝑜 

 

1 

= (1 − 𝑖) ∫(𝑥2 + 2𝑖𝑥3)𝑑𝑥 

𝑥=𝑜 

 

= (1 − 𝑖) [
𝑥3  

+ 𝑖 𝑥4  1 
] = (1 − 𝑖) [

1 
+ 𝑖 ] 

3 2   0 3 2 

 

4. Evaluate ∫
𝟐+𝒊

(𝟐𝒙 + 𝟏 + 𝒊𝒚)𝒅𝒛 along the straight line joining (𝟏, −𝒊) 𝒂𝒏𝒅 (𝟐, 𝒊)? 
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Sol: We have 𝑧 = 𝑥 + 𝑖𝑦 ⟹ 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦 

 
Equation of the line joining the two points (1, −1) and (2,1) is 

 

 

𝑦 + 1 = 
1 − (−1) 

 
 

2 − 1 

 

(𝑥 − 1) 
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1−𝑖 

1 

1 

i.e., 𝑦 + 1 = 2(𝑥 + 1) or 𝑦 = 2𝑥 − 3 

 
Therefore 𝑧 = 𝑥 + 𝑖𝑦 = 𝑥 + 𝑖(2𝑥 − 3) = (1 + 2𝑖)𝑥 − 3𝑖 

 
⟹ 𝑑𝑧 = (1 + 2𝑖)𝑑𝑥 

 
Also 𝑥 varies from 1to 2. 

 

Hence ∫
2+𝑖

(2𝑥 + 1 + 𝑖𝑦)𝑑𝑧 = ∫
2
[2𝑥 + 1 + 𝑖(2𝑥 − 3)](1 + 2𝑖)𝑑𝑥 

 
2 

= (1 + 2𝑖) ∫[2(1 + 𝑖)𝑥 + (1 − 3𝑖)𝑑𝑥] 

1 
 

= (1 + 2𝑖)[(1 + 𝑖)𝑥2 + (1 − 3𝑖)𝑥]2 

 
= (1 + 2𝑖)[(1 + 𝑖)4 + (1 − 3𝑖)2 − (1 + 𝑖) − (1 − 3𝑖)] 

 
= (1 + 2𝑖)(4) = 4 + 8𝑖 

 
The Cauchy-Goursat Theorem:If a function 𝑓(𝑧) is analytic at all points interior to and on 

a simple closed curve C, then ∮ 𝑓(𝑧)𝑑𝑧 = 0. 

This is called Cauchy-Goursat theorem. 

 
Cauchy’s (Integral) Theorem: Let 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) be analytic on and within a 

simple closed contour c and let 𝑓′(𝑧) be continuous there. Then 

 
∮ 𝑓(𝑧)𝑑𝑧 = 0. 

 

Proof:We have 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) and 𝑧 = 𝑥 + 𝑖𝑦 ⟹ 𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦 

Therefore 𝑓(𝑧)𝑑𝑧 = (𝑢 + 𝑖𝑣)(𝑑𝑥 + 𝑖𝑑𝑦) = (𝑢𝑑𝑥 − 𝑣𝑑𝑦) + 𝑖(𝑣𝑑𝑥 + 𝑢𝑑𝑦) 

Hence ∮ 𝑓(𝑧)𝑑𝑧 = ∮(𝑢𝑑𝑥 − 𝑣𝑑𝑦) + 𝑖 ∮(𝑣𝑑𝑥 + 𝑢𝑑𝑦) 

𝜕𝑣 𝜕𝑢 𝜕𝑢 𝜕𝑣 

= ∬   [− 
𝜕𝑥 

− 
𝜕𝑦

] 𝑑𝑥𝑑𝑦 + 𝑖 ∬    [
𝜕𝑥 

− 
𝜕𝑦

] 𝑑𝑥𝑑𝑦 … … … (1) 
𝑅 𝑅 

 

Since 𝑓′(𝑧) is continuous, the four partial derivatives 𝜕𝑢 , 
𝜕𝑢 

, 
𝜕𝑣 

𝑎𝑛𝑑 
𝜕𝑣 

are also continuous 
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 

in the region R enclosed by C. Hence we can apply Green’s theorem. 

 
Using Green’s theorem in plane, assuming that R is the region bounded by C. 



13
5 

 

𝑗 

It is given that 𝑓(𝑧) = 𝑢 + 𝑖𝑣 is analytic on and within c. 

 

Hence 𝜕𝑢 = 
𝜕𝑣 

, 
𝜕𝑢 

= − 
𝜕𝑣

 …………………………(2) 

𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥 

 

Therefore Using (2) in (1), we have 

 
 

∮ 𝑓(𝑧)𝑑𝑧 = ∬  0𝑑𝑥𝑑𝑦 + 𝑖 ∬  0𝑑𝑥𝑑𝑦 = 0 
𝑅 𝑅 

 

Hence the theorem follows. 

 
Simple connected domain: A domain D is said to be simply connected if every simple 

closed curve that is in D can be shrink to a point without leaving the domain. 

(or) 

 
A simply connected domain is a domain without holes 

 
Note: Every disc is simple connected domain 

 
Eg: 𝐴 = {𝑧𝜖ℂ/|𝑧| < 1}, Disc with centre(0,0) and radius 𝑟 = 1 

 
Multiply connected domain: A domain D is said to be multiply connected if it is not simply 

connected. 

(or) 

 
A multiply connected domain is a domain with holes. 

 
Eg: The region between two concentric circles is a multiply connected 

T = {𝑧𝜖ℂ/1 < |𝑧| < 2} 

 
 
 
 
Cauchy-Goursat Theorem For A Multiply Connected Region: 

 
Statement: Let c denote a closed contour and 𝑐1, 𝑐2, 𝑐3, … … … 𝑐𝑘 be a finite number of closed 

contours interior to c such that the interiors of the 𝑐′𝑠 do not have any points in common. 

Let R be the region consisting of points on and within c except the interior points of 

𝑐𝑗. If B denotes the positively oriented boundary of the region R, then 



 

𝑖 

∫𝐵 𝑓(𝑧)𝑑𝑧 = 0 , where 𝑓(𝑧) is analytic in the region 𝑅. 

 

Result:The above theorem can also be stated as 

 
If ‘c’ is a simple closed contour and 𝑐1, 𝑐2, 𝑐3, … … … 𝑐𝑛 are closed contours within 𝑐 

and if 𝑓(𝑧) is analytic within c but on and outside the 𝑐′𝑠 then 

 

 
∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧 + ∫ 𝑓(𝑧)𝑑𝑧 + ⋯ … … … … . ∫ 𝑓(𝑧)𝑑𝑧 

𝑐 𝑐1 𝑐2 𝑐𝑛 

 

Where the integrals are all taken in the anticlockwise sense around the curves. 

 
Result:Let ‘𝑐’ be a simple closed curve. Let 𝑓(𝑧) be analytic on and within ‘𝑐’ everywhere 

except at 𝑧 = 𝑎 

 

∫ 𝑓(𝑧)𝑑𝑧 = ∫ 𝑓(𝑧)𝑑𝑧 

𝑐 𝑐1 

 

Cauchy’s Integral Formula: 

 
Statement: Let 𝑓(𝑧) be an analytic function everywhere on and within a closed contour 𝑐. 

If 𝑧 = 𝑎 is any point within 𝑐, then 

 

𝑓(𝑎) = 
1

 
𝑓(𝑧) 

∫ 𝑑𝑧 

2𝜋𝑖  𝑐 (𝑧−𝑎) 

 

Where the integral is taken in the positive sense around 𝑐. 

 
Proof:Let 𝑓(𝑧) be analytic within a closed contour. Let 𝑧 = 𝑎 be within 𝑐. Choose a suitably 

small positive number 𝑟0 and describe a circle 𝑐0 with centre at a and radius 𝑟0 so that this 

circle 𝑐0 is entirely within 𝑐.Then 𝑓(𝑧) is analytic within 𝑐 except at 𝑧 = 𝑎. 
𝑧−𝑎 

 

Therefore 𝑓(𝑧) is analytic in the region between 𝑐and 𝑐 . 
 

𝑧−𝑎 0 

 
 
 
 
 
 
 

y 
 
 
 



 

c 
81 

𝑐0 
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𝑐 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Therefore by generalization to cauchy’sthorem, we get 
 
 

𝑓(𝑧) 𝑓(𝑧) 
∫ 

(𝑧 − 𝑎) 
𝑑𝑧 = ∫ 

(𝑧 − 𝑎) 
𝑑𝑧

 
𝑐 𝑐0 

 

 
= ∫ 

𝑐0 

 
[𝑓(𝑧) − 𝑓(𝑎)] + 𝑓(𝑎) 

𝑧 − 𝑎 
𝑑𝑧

 

 
 

= 𝑓(𝑎) ∫ 
𝑐 

𝑑𝑧 

𝑧 − 𝑎 
+ ∫

 

𝑓(𝑧) − 𝑓(𝑎) 

𝑧 − 𝑎 
𝑑𝑧 … … … . . (1) 

 

Where the integrals around 𝑐0 are all taken in the positive sense, 

on 𝑐0: 𝑧 − 𝑎 = 𝑟0𝑒𝑖𝜃 and 𝑑𝑧 = 𝑖𝑟0𝑒𝑖𝜃𝑑𝜃. 

Hence, ∫ 
𝑑𝑧   

= 
 

 

2𝜋 
𝑖𝑟0𝑒𝑖𝜃 

𝑑𝜃 = 𝑖 
 

 

2𝜋 𝑑𝜃 = 2𝜋𝑖 … … … … … … … … … . (2) 

𝑐0 𝑧−𝑎 ∫
𝜃=0 𝑟0𝑒𝑖𝜃 ∫

0 

 

For every positive 𝑟0. 

 
Also 𝑓(𝑧) is continuous at 𝑎. Hence, to each 𝜖 > 0, there corresponds a positive 𝛿 such that 

 
|𝑓(𝑧) − 𝑓(𝑎)| < 𝜖 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑧 − 𝑎| < 𝛿. 

 
Let us take 𝑟0= 𝛿. Then 𝑐0 is |𝑧 − 𝑧0| = 𝛿. 

 
Hence, |∫   

𝑓(𝑧)−𝑓(𝑎) 
𝑑𝑧| ≤ ∫    

|𝑓(𝑧)−𝑓(𝑎)| |𝑑𝑧| < 
𝗀 

∫   |𝑑𝑧| 
𝑐0 𝑧−𝑎 𝑐0 |𝑧−𝑎| 𝛿   𝑐0 
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𝛿 

𝜖 
< (2𝜋𝛿) 〈∫ |𝑑𝑧| = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 𝑐0〉 

𝑐0 

 

< 2𝜋𝜖 

 
Hence, the second integral on the R.H.S of (1) can be made arbitrarily small by taking 

𝑟0 sufficiently small. Thus, 
 

 
𝑓(𝑧) 

∫ 
(𝑧 − 𝑎) 

𝑑𝑧 = 2𝜋𝑖 𝑓(𝑎) + ∫ 

 
𝑓(𝑧) − 𝑓(𝑎) 

𝑧 − 𝑎 
𝑑𝑧

 

𝑐 
𝑐0 

 

L.H.S and the first term on the R.H.S are independent of 𝑟0 and the second integral on the 

R.H.S can be made arbitrarily small. Further the second integral must also be independent of 

𝑟0. 

 
Hence, it must be 0. Thus, 

 
 

𝑓(𝑧) 
∫ 

(𝑧 − 𝑎) 
𝑑𝑧 = 2𝜋𝑖 𝑓(𝑎) 

𝑐 
 

i.e., (𝑎) = 
1

 
𝑓(𝑧) 

∫ 𝑑𝑧. 

2𝜋𝑖  𝑐 (𝑧−𝑎) 

 

Hence the theorem follows. 

 
Generalization Of Cauchy’s Integral Formula: 

 
Statement: If 𝑓(𝑧) is analytic on and within a simple closed curve 𝑐 and if 𝑎 is any point 

within 𝑐, then 

 

𝑓𝑛(𝑎) = 
𝑛!

 𝑓(𝑧) 
∫ 

 
𝑑𝑧 

2𝜋𝑖 𝑐 (𝑧 − 𝑎)𝑛+1 

 

Morera’s Theorem: 
 

 

∫𝑐 

If a function 𝑓 is continuous throughout a simply connected domain 𝐷 and if 

𝑓(𝑧)𝑑𝑧 = 0 for every closed contour 𝑐in 𝐷, the 𝑓(𝑧) is analytic in 𝐷. 

 

Problems: 
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1. Evaluate ∫ 

𝒛𝟐−𝒛+𝟏 
𝒅𝒛 where 𝑪: |𝒛| = 

𝟏 
taken in anticlockwise sense. 

𝒄 𝒛−𝟏 𝟐 
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0 

Sol: Let 𝑓(𝑧) = 
𝑧2−𝑧+1

 
𝑧−1 

 

Since 𝑧 = 1 is outside 𝑐, 𝑓(𝑧) is analytic inside 𝑐. 

 

By Cauchy’s theorem, ∫𝑐 𝑓(𝑧)𝑑𝑧 = 0. 

 

2. Prove that ∫ 
𝟏
 𝒅𝒛 = 𝟐𝝅𝒊, where C is |𝒛 − 𝒂| = 𝒓. 

𝒄   𝒛−𝒂 

 

Sol: Let 𝐴 be the fixed complex number ‘𝑎’ and P a variable point 𝑧 on the circle. 

 
Then 𝐴𝑃 = 𝑧 − 𝑎. Let AP make an angle 𝜃 with x-axis. Then 𝐴𝑃 = 𝑟𝑒𝑖𝜃. 

 
Therefore 𝑧 − 𝑎 = 𝑟𝑒𝑖𝜃 

 
This is the parametric equation to the circle C and 𝜃 varies from 0 to 2𝜋, 𝑟 being 

constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

x 
 
 

Hence ∫ 
𝑑𝑧    

= 
 

 

2𝜋 𝑟𝑖𝑒𝑖𝜃 

𝑑𝜃
 

 
 

𝑐   𝑧−𝑎 ∫0 𝑟𝑒𝑖𝜃 

 

2𝜋 

∫0 
𝑖𝑑𝜃 

 

= 𝑖(𝜃)2𝜋 

 
= 2𝜋𝑖. 

y 
Z plane 

A 

P 
r 𝜃 

a 

= 
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𝑧 

𝒛 

3. Consider the region 𝟏 ≤ |𝒛| ≤ 𝟐. If B is the positively oriented boundary of this region 

then show that ∫ 
𝒅𝒛

 = 𝟎. 

𝑩 𝒛𝟐(𝒛𝟐+𝟏𝟔) 

 

Sol: Given 𝑓(𝑧) = 
1

 
𝑧2(𝑧2+16) 

 

|𝑧| = 1 𝑎𝑛𝑑 |𝑧| = 2are two circles with centre at (0,0) and radii equal to 1 and 2 

respectively 
 

 

 

 

 

The singular points of 𝑓(𝑧) are obtained by equating 𝑧2(𝑧2 + 16) = 0 

 
⟹ 𝑧 = 0 (𝑜𝑟)𝑧2 + 16 = 0 

 
⟹ 𝑧 = 0 (𝑜𝑟)𝑧 = ±4𝑖 

 
𝑧 = 0,4𝑖, −4𝑖are called singular points, which are outside of the region. 

By Cauchy’s integral therorem, 

𝑑𝑧 ∫ = 0. 

𝐵  𝑧2(𝑧2+16) 

 

4. If 𝑩 is the positively oriented boundary of the region between the circle |𝒛| = 𝟒 and 

the square with sides along the lines 𝒙 = ±𝟏 and 𝒚 = ±𝟏, then evaluate ∫  𝒛+𝟐
 

𝒅𝒛? 

 

𝑩  𝐬𝐢𝐧(  ) 
𝟐 

 

Sol: Let 𝑓(𝑧) = 
𝑧+2

 
sin( ) 

2 

 

The given region is between |𝑧| = 4 and the square = ±1 𝑎𝑛𝑑 𝑦 = ±1, 
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|𝑧| = 4is the circle with centre (0,0) 𝑎𝑛𝑑 𝑟 = 4 
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𝑐 

𝐵 

𝑐 

The singular points of 𝑓(𝑧) are given by sin (
𝑧
) = 0 

2 
 

⟹ 
𝑧 

= 𝑛𝜋, n is an integer 
2 

 

i.e. , 𝑧 = 2𝑛𝜋 

 
𝑧 = 0,±2𝜋, ±4𝜋, … … … …. 

 
Which are called singular points. 

 
Here 𝑧 = 0 lies inside of the square and all remaining points lies outside of the circle. 

Therefore 𝑓(𝑧) is analytic within 𝐵. 

By Cauchy’s theorem, 

 

𝑑𝑧 
∫  

𝑧2(𝑧2 + 16) 
= 0

 

 

5.Evaluate∫ 
𝒛𝟐+𝟒 

𝒅𝒛 where 𝒄 is (𝒂)|𝒛| = 𝟓 (𝒃)|𝒛| = 𝟐 taken in anticlockwise? 
𝒄 𝒛−𝟑 

 

Sol: (𝑎)|𝑧| = 5 is the circle with centre at (0,0) and radius 5 units. 

 
Given function is analytic everywhere except at 𝑧 = 3 and it lies inside 𝐶. 

 

𝑧2 + 4 
∫ 

𝑧 − 3 
𝑑𝑧 = ∫ 

𝑓(𝑧) 

𝑧 − 𝑎 
𝑑𝑧

 

 

Where (𝑧) = 𝑧2 + 4, 𝑎 = 3 and 𝑐 is |𝑧| = 5 taken in anticlockwise sense. 
 

Using Cauchy’s integral formula 

 

∫ 
𝑓(𝑧) 

𝑑𝑧 = 2𝜋𝑖𝑓(𝑎) = 2𝜋𝑖[𝑧2 + 4] 
𝑧 − 𝑎 

 
 
 
 
 

𝑧=𝑎=3 

𝑐 

 

= 2𝜋𝑖(9 + 4) = 26𝜋𝑖 

 
(𝑏)|𝑧| = 2is the circle with centre at (0,0) and radius equal to 2. The point 𝑧 = 3 is outside 

this curve. 

Therefore the function 𝑧
2+4 

is analytic on and within 𝑐: |𝑧| = 2. 
𝑧−3 

 

Hence by Cauchy’s theorem ∫ 
𝑧2+4 

𝑑𝑧 = 0 
𝑐 𝑧−3 
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𝑐 

𝑐 

𝑐 𝑐 

𝑐 

6. Evaluate∫ 
𝒆𝟐𝒛

 
𝒅𝒛 where 𝒄 is the circle |𝒛| = 𝟑. 

𝒄   (𝒛−𝟏)(𝒛−𝟐) 

 

Sol: Given 𝑓(𝑧) = 𝑒2𝑧 
 

1 
 

 

(𝑧−1)(𝑧−2) 
=   

1 

𝑧−2 
−   

1 

𝑧−1 
using partial fractions. 

 

Therefore ∫ 
𝑒2𝑧 

𝑑𝑧 = ∫ 
𝑒2𝑧 

𝑑𝑧 − ∫ 
𝑒2𝑧 

𝑑𝑧 
𝑐   (𝑧−1)(𝑧−2) 𝑐   𝑧−2 𝑐   𝑧−1 

 

The points 𝑧 = 1,2 lies inside 𝑐. 

 
Because 𝑒2𝑧 is analytic everywhere, according to Cauchy’s integral formula, 

 

𝑒2𝑧 

∫ 
𝑐     𝑧 − 2 

 
𝑑𝑧 − ∫ 

𝑐 

𝑒2𝑧 
 

 

𝑧 − 1 
𝑑𝑧 = [2𝜋𝑖𝑒2𝑧]𝑧=2 − [2𝜋𝑖𝑒2𝑧]𝑧=1 = 2𝜋𝑖[𝑒4 − 𝑒2] 

 

7. Use Cauchy’s integral formula to evaluate ∫ 
𝒆𝒛

 𝒅𝒛 where C is the circle |𝒛| = 𝟒. 

 
Sol: 𝑒

𝑧

 

(𝑧2+𝜋2)2 

 
= 

𝑒𝑧 

(𝑧+𝜋𝑖)2(𝑧−𝜋𝑖)2 

𝒄    (𝒛𝟐+𝝅𝟐)
𝟐

 

 

𝑓(𝑧) = 𝑒𝑧is analytic within the circle |𝑧| = 4 and the two singular points 𝑧 = ±𝜋𝑖 lies inside 

𝐶. 
 

Let 1 
(𝑧2+𝜋2)2 

= 
1 

(𝑧+𝜋𝑖)2(𝑧−𝜋𝑖)2 

 

= 
𝐴 

𝑧+𝜋𝑖 
+ 

𝐵 

(𝑧+𝜋𝑖)2 
+   

𝐶 

𝑧−𝜋𝑖 
+ 

𝐷 

(𝑧−𝜋𝑖)2 

 

Solving for 𝐴, 𝐵, 𝐶 𝑎𝑛𝑑 𝐷, we get 
 
 

𝐴  =  
7 

2𝜋3𝑖 
, 𝐵 = 

−1
 

4𝜋2 

, 𝐶 = 
−7

 
2𝜋3𝑖 

, 𝐷 = 
−1

 
4𝜋2 

 

𝑒𝑧 7 𝑒𝑧 

∫    
(𝑧2 + 𝜋2)2 

𝑑𝑧 = 
2𝜋3𝑖 

∫
 

1 

(𝑧 + 𝜋𝑖) 
𝑑𝑧

 

𝑒𝑧 7 

 
 

𝑒𝑧 

 
 
1 𝑒𝑧 

− 
4𝜋2 

∫
 (𝑧 + 𝜋𝑖)2 

𝑑𝑧 − 
2𝜋3𝑖 

∫
 (𝑧 − 𝜋𝑖) 

𝑑𝑧 − 
4𝜋2 

∫
 (𝑧 − 𝜋𝑖)2 

𝑑𝑧
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𝑐 

 

Therefore by Cauchy’s integral formula, 

 

𝑒𝑧 

∫   
(𝑧2 + 𝜋2)2 

 
𝑑𝑧 = 

7 
 

 

2𝜋3𝑖 

 

2𝜋𝑖𝑓(−𝜋𝑖) − 
1 

 
 

4𝜋2 

 

2𝜋𝑖𝑓′(−𝜋𝑖) − 
7 

 
 

2𝜋3𝑖 

 

2𝜋𝑖𝑓(𝜋𝑖) 

1 
− 

4𝜋2 

 
2𝜋𝑖𝑓′(𝜋𝑖) 
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7 
= 

𝜋2 𝑒
−𝑖𝜋 −   

𝑖 
2𝜋 

𝑒−𝑖𝜋 − 
7 
𝜋2 

𝑒𝑖𝜋 −  
𝑖 

2𝜋 
𝑒𝑖𝜋  = 

𝑖 
𝜋 

 

8.Find𝒇(𝟐) and 𝒇(𝟑) if 𝒇(𝒂) = ∫   
(𝟐𝒛𝟐−𝒛−𝟐) 

𝒅𝒛 where 𝑪 is the circle |𝒛| = 𝟐. 𝟓 using 

𝒄 

Cachy’s integral formula? 

 
Sol: Given 𝑓(𝑎) = ∫ 

(2𝑧2−𝑧−2) 
𝑑𝑧 

𝒛−𝒂 

𝑐 𝑧−𝑎 
 

(𝑖)𝑎 = 2lies inside the circle 𝐶: |𝑧| = 2.5 

 
Let ∅(𝑧) = 2𝑧2 − 𝑧 − 2 

 

By Cauchy’s integral formula, ∅(𝑎) = 
1

 ∫   
∅(𝑧) 

𝑑𝑧
 

2𝜋𝑖  𝑐 𝑧−𝑎 

 
 

⟹ 2𝜋𝑖∅(𝑎) = ∫ 
𝑐 

∅(𝑧) 
 

 

𝑧 − 𝑎 

 

𝑑𝑧 = 𝑓(𝑎) 

 

⟹ 𝑓(𝑎) = 2𝜋𝑖∅(𝑎) = 2𝜋𝑖(2𝑎2 − 𝑎 − 2) 

 
Therefore 𝑓(2) = 2𝜋𝑖(8 − 2 − 2) = 8𝜋𝑖 

 
(𝑖𝑖)Taking 𝑎 = 3, we get, 𝑓(3) = ∫ 

(2𝑧2−𝑧−2) 
𝑑𝑧 

𝑐 𝑧−3 

 

Now, the point 𝑧 = 3 lies outside 𝐶. Hence the integrand is analytic within and on 𝐶. 

 
Therefore by Cauchy’s theorem, 𝑓(3) = ∫ 

(2𝑧2−𝑧−2) 
𝑑𝑧 = 0. 

𝑐 𝑧−3 

 

9. Evaluate using Cauchy’s theorem ∫ 
𝒛𝟑𝒆−𝒛 

𝒅𝒛 where 𝑪 is |𝒛 − 𝟏| = 
𝟏
. 

𝒄    (𝒛−𝟏)𝟑 𝟐 

 

Sol: Given curve is |𝑧 − 1| = 
1
. 

2 
 

This is clearly a circle 𝐶 with centre at 1 and radius 0.5 units. 

 
The integrand has only one singular point at 𝑧 = 1 and it lies inside 𝐶. 

Consider the function 𝑓(𝑧) = 𝑧3𝑒−𝑧 
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𝑐 

This function is analytic at all points inside 𝐶. 

 

 

Hence by Cauchy’s integral formula, 

 

𝑓𝑛(𝑎) = 
𝑛!

 

 
 

𝑓(𝑧) 
∫ 

 
 

 
𝑑𝑧 

2𝜋𝑖 𝑐 (𝑧 − 𝑎)𝑛+1 

 

In this, take 𝑎 = 1 and 𝑛 = 2. 
 

Then  

 
𝑓′′(1) = 

 
 
2! 

∫ 
2𝜋𝑖  𝑐 

 

𝑧3𝑒−𝑧 
 

 

(𝑧 − 1)3 

 
 

𝑑𝑧 

 

𝑧3𝑒−𝑧 

∴ ∫  
(𝑧 − 1)3 

 

𝑑𝑧 = 𝜋𝑖𝑓′′(1) 

 
 
= 𝜋𝑖 { 

𝑑2 

𝑑𝑧2 

 

[𝑧3𝑒−𝑧]} 

 
 

 
𝑧=1 

 

 𝑑  
= 𝜋𝑖 { [3𝑧2𝑒−𝑧 − 𝑧3𝑒−𝑧]} 

𝑑𝑧 𝑧=1 

 

= 𝜋𝑖[6𝑧𝑒−𝑧 − 3𝑧2𝑒−𝑧 − (3𝑧2𝑒−𝑧 − 𝑧3𝑒−𝑧)]𝑧=1 

 
= 𝜋𝑖[𝑧3𝑒−𝑧 − 6𝑧2𝑒−𝑧 + 6𝑧𝑒−𝑧]𝑧=1 

 
= 𝜋𝑖[𝑒−1 − 6𝑒−1 + 6𝑒−1] = 𝜋𝑖𝑒−1 

 
10. Evaluate ∫ 

𝐬𝐢𝐧 𝝅𝒛𝟐+𝐜𝐨𝐬 𝝅𝒛𝟐 

𝒅𝒛, where 𝒄 is the circle |𝒛| = 𝟑 using Cauchy’s integral 
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formula. 

𝒄 (𝒛−𝟏)(𝒛−𝟐) 



94  

𝑐 

Sol: 𝑓(𝑧) = sin 𝜋𝑧2 + cos 𝜋𝑧2 is analytic within the circle |𝑧| = 3 and the singular points 

𝑎 = 1,2 lie inside 𝑐. 

 
𝑓(𝑧) 1 1 𝑓(𝑧) 𝑓(𝑧) 

∴ ∫    
(𝑧 − 1)(𝑧 − 2) 

𝑑𝑧 = ∫    [
𝑧 − 2 

− 
𝑧 − 1

] 𝑓(𝑧)𝑑𝑧 = ∫ 𝑑𝑧 − ∫ 𝑧 − 2 𝑧 − 2 
𝑑𝑧

 

𝑐 𝑐 𝑐 𝑐 

 

= 2𝜋𝑖𝑓(2) − 2𝜋𝑖𝑓(1) (using Cauchy’s integral formula) 

 
= 2𝜋𝑖[(sin 4𝜋 + cos 4𝜋) − (sin 𝜋 + cos 𝜋)] 

 
= 2𝜋𝑖[1 − (−1)] = 4𝜋𝑖 

 
i.e., ∫   

sin 𝜋𝑧2+cos 𝜋𝑧2 

𝑑𝑧 = 4𝜋𝑖 
𝑐 (𝑧−1)(𝑧−2) 

 

Assignment questions: 
 

1.Find whether 𝑓(𝑧) = 
𝑥−𝑖𝑦

 
𝑥2+𝑦2 

is analytic or not. 

 

2. Show that the real and imaginary parts of the function 𝑤 = log 𝑧 satisfy the C-R equations 

when 𝑧 is not zero. 

3. Prove that the function 𝑓(𝑧) defined by 
 

 
𝑓(𝑧) = { 

𝑥3(1 + 𝑖) − 𝑦3(1 − 𝑖) 

𝑥2 + 𝑦2 

0, (𝑧 = 0) 

 
, (𝑧 ≠ 0) 

 

Is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet 𝑓′(0) does 

not exist. 

4. Find 𝑘 such that 𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑘𝑥𝑦2 may be harmonic and find its conjugate. 

 
5. Evaluate ∫ (𝑥 − 2𝑦)𝑑𝑥 + (𝑦2 − 𝑥2) 𝑑𝑦 where 𝐶 is the boundary of the first quadrant of 

the circle 𝑥2 + 𝑦2 = 4. 

6. Verify Cauchy’s theorem for the function 𝑓(𝑧) = 3𝑧2 + 𝑖𝑧 − 4 if 𝑐 is the square with the 

vertices at 1 ± 𝑖, −1 ± 𝑖. 

7. Evaluate ∫ 
𝑧3−sin 3𝑧 

𝑑𝑧 with 𝐶: |𝑧| = 2 using Cauchy’s integral formula. 
 

𝑐 𝜋 3 
(𝑧−

2
) 

 



95  

8. Evaluate ∫ 
log 𝑧 

𝑑𝑧 where 𝐶: |𝑧 − 1| = 
1 

using Cauchy’s integral formula. 
𝑐   (𝑧−1)3 2 
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9. Using Cauchy’s integral formula, evaluate ∫ 
𝑧4

 
𝑑𝑧   where 𝐶   is the ellipse 

 
9𝑥2 + 4𝑦2 = 36. 

 
10. Evaluate ∫ 

𝑑𝑧
 

 
 

 
where 𝐶: |𝑧 − 𝑖| = 2. 

𝑐   (𝑧+1)(𝑧−𝑖)2 

𝑐   (𝑧2+4)2 

 

11. Evaluate ∫ 
𝑒𝑧

 𝑑𝑧 where 𝐶: |𝑧 − 1| = 3. 

𝑐   𝑧(𝑧+1) 

 

12. Evaluate ∫ 
𝑧2−𝑧+1 

𝑑𝑧 where 𝑐 is (𝑖) |𝑧| = 1(𝑖𝑖)|𝑧| = 
1 

taken in anticlockwise sense. 
𝑐 𝑧−1 2 
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𝑛=1 

𝑛=1 

𝑛=1 

𝑘=0 

𝑘=0 

𝑘=0 

𝒏=𝟏 

𝑛=1 

𝑛=1 

UNIT –IV 

Singularities and Residues 

Introduction: In this unit, we discuss the method of expanding a given function about a point 

‘𝑎’ in powers of ‘𝑧 − 𝑎’, as we proceed, we recognize that this theory enables us in evaluating 

certain real & complex integrals easily. Here we discuss Taylor’s series & Laurent series 

expansion of 𝑓(𝑧)about point ‘a’. 

In this unit we also discuss about Residue Theorem which is useful to evaluate certain 

real integrals. 

Sequence: A sequence {𝑍𝑛} is a function from 𝑁        𝐶 i.e., 𝑍𝑛: 𝑁         𝐶 

Series: Let {𝑍𝑛}∞ be a sequence, the nth partial sum of sequence is called series and it is 

denoted by ∑∞ 𝑍𝑛 

Power Series: Let {𝑍𝑛}∞ be a sequence of complex no’s the series ∑∞ 𝑎𝑛 (𝑧 − 𝑧0)𝑛 is 
𝑛=1 

called a power series of 𝑧0. 

𝑛=1 

 The Series ∑∞ 𝑎𝑛𝑧𝑛 is a power series about the origin. 

 If a series ∑∞ 𝑎𝑘 converges at every point of circle ‘C’ & diverges at every point 

outside the circle ‘C’, then such a Circle ‘C’ is said to be circle of convergence of the 

series ∑∞ 

series ∑∞ 

𝑎𝑘. The Radius R of the Circle ’C’ called the radius of convergence of the 

𝑎𝑘. 

 The formula to find radius of convergence (R) is 1 = 𝐿𝑡 𝑆𝑢𝑝 |
𝑎𝑛+1| (or) 1 = 

 
𝐿𝑡𝑛→∞ 

 
𝑆𝑢𝑝|𝑎𝑛 

 

|
1⁄𝑛. 

𝑅 𝑛→∞ 𝑎𝑛 𝑅 

1. Find the circle of convergence of the series ∑∞ (𝐥𝐨𝐠 𝒛)𝒏 𝒛𝒏 

Sol. We have ∑∞ (log 𝑧)𝑛 𝑧𝑛 = ∑∞ 𝑎𝑛𝑧𝑛 

on comparing 𝑎𝑛 = (log 𝑧)𝑛 

we know that 1 = 𝐿𝑡  
𝑆𝑢𝑝|𝑎 

 

 

|1⁄𝑛
 

𝑅 𝑛→∞ 𝑛 

= 𝐿𝑡𝑛→∞ 

1 = ∞ 
𝑅 

𝑅 = 0 

Radius of Convergence =0 

i.e., Circle with zero radius. 

𝑆𝑢𝑝|(log 𝑧)𝑛|
1⁄𝑛 

Hence the circle of convergence is |𝑧| = 0 
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2. Find the circle of convergence of the series ∑∞ 
(−𝟏)𝒏−𝟏𝒛𝟐𝒏−𝟏 

(𝟐𝒏−𝟏)! 
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Sol.   We have 𝑎𝑛 = 
(−1)𝑛−1 

(2𝑛−1)! 
𝑎𝑛+1 = 

(−1)𝑛 

(2𝑛+1)! 

1 = 𝐿𝑡 𝑆𝑢𝑝 |
𝑎𝑛+1| 

𝑅 𝑛→∞ 

= 𝐿𝑡𝑛→∞ 

𝑎𝑛 

𝑆𝑢𝑝 |
 (2𝑛−1)! 

|
 

(2𝑛+1)(2𝑛)(2𝑛−1)! 

= 𝐿𝑡𝑛→∞ 
  1  

| | 
(2𝑛+1)(2𝑛) 

= 0 

∴ 𝑅 → ∞, Circle with ∞ radius 

∴The given series is convergent everywhere in the complex plane. 

Taylor’s Theorem: 

Let 𝑓(𝑧) be analytic at all points within a circle C with center at ‘a’ & radius r. then at each 

point ‘z’ within ‘C’. 

𝑓(𝑧) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑧 − 𝑎) + 
𝑓′′ (𝑎) 

(𝑧 − 𝑎)2 + 
𝑓′′′ (𝑎) 

(𝑧 − 𝑎)3 + … … .. _(1) 
2! 3! 

𝑖.e., the series on the right hand side in (1) converges to f(z) whenever |𝑧 − 𝑎| < 𝑟 

 
 

- The expansion in (1) on the R.H.S is called the Taylor’s series expansion of 𝑓(𝑧) in 

power of (𝑧 − 𝑎) (or) Taylor’s series expansion of 𝑓(𝑧) about z =a (around z = a) 

Maclaurin’s Series: 

Taylor’s series expansion about a=0 is called Macluarin’s Series i.e., 

𝑓(𝑧) = 𝑓(0) + 𝑓′(0)(𝑧) + 
𝑓′′(0) 

(𝑧)2 + 
𝑓′′′ (0) 

(𝑧)3 + … … ..   _(2) 
2! 3! 

which is called Maclaurin’s Theorem. 

Note: Suppose we want Taylor’s Series expansion of 𝑓(𝑧) around 𝑧 = 𝑎. Then 𝑓(𝑧) must be 

analytic at 𝑧 = 𝑎 & within circle C: |𝑧 − 𝑎| = 𝑅, where 𝑅 is as large as possible. 

Expansion of some standard functions: 

1.   𝑒𝑧 = 1 + 𝑧 + 
𝑧2 

+ 
𝑧3 

+ 
𝑧4 

+……………= ∑∞ 
𝑧𝑛 

∀ 𝑧 i.e., |𝑧| < ∞ 
    

2! 3! 4! 𝑛=1 𝑛! 

2. 𝑠𝑖𝑛𝑧 = 𝑧 − 
𝑧3 

+ 
𝑧5 

− … … … .. 
3! 5! 

3. 𝑐𝑜𝑠𝑧 = 1 − 
𝑧2 

+ 
𝑧4 

− … … … .. 
2! 

 
4. 𝑠𝑖𝑛ℎ𝑧 = ∑∞ 

4! 

𝑧2𝑛+1 
 

 

𝑛=1 (2𝑛+1)! 

Important Note: To obtain Taylor’s series expansion of 𝑓(𝑧) around about 𝑧 = 𝑎, then put 

𝑧 − 𝑎 = 0. Then 

𝑓(𝑧) = 𝑓(𝑤 + 𝑎) = 𝜙(𝑤) (say) 

now write the Maclaurin’s series expansion of 𝜙(𝑤). 
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Finally substitute𝑤 = 𝑧 − 𝑎, then we get required Taylor’s Series. 
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Problems on Taylor’s Series Expansion of 𝒇(𝒛): 

1. Expand 𝒆𝒛 as Taylor’s series about 𝒛 = 𝟏 

Sol: Given 𝑓(𝑧) = 𝑒𝑧, 𝑧 = 1 

Let 𝑧 − 1 = 𝑤 ⇒ 𝑧 = 1 + 𝑤 

Now, write Maclaurin’s series for 𝜙(𝑤) 

i.e., 𝜙(𝑤) = 𝜙(0) + 𝜙′(0)(𝑤) + 
𝜙′′(0) 

(𝑤)2 + 
𝜙′′′(0) 

(𝑤)3 + … … … … 
2! 3! 

𝜙(𝑤) = 𝑒. 𝑒𝑤   𝜙′(𝑤) = 𝑒. 𝑒𝑤 𝜙′′(𝑤) = 𝑒. 𝑒𝑤 

𝜙(0) = 𝑒 𝜙′(0) =e 𝜙′′(0) = 𝑒 

∴ 𝜙(𝑤) = 𝑒 + 𝑒𝑤 + 
𝑤2 

𝑒 + … … … … 
2! 

𝜙(𝑤) = 𝑒[1 + 𝑤 + 
𝑤2 

+ … … … …] 
2! 

Now replace 𝑤 by 𝑧 − 1 

𝜙(𝑧 − 1) = 𝑒[1 + (𝑧 − 1) + 
(𝑧−1)2 

+ … … … …] 
2! 

which is the Taylor’s series of 𝑓(𝑧) = 𝑒𝑧 about 𝑧 = 1. 
 
 

2. Find Taylors series of 𝒇(𝒛) = 
𝟏

 
(𝟏+𝒛)𝟐 

about 𝒛 = −𝒊 

Sol: We know that Taylor’s Theorem for 𝑓(𝑧) is 

𝑓(𝑧) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑧 − 𝑎) + 
𝑓′′ (𝑎) 

(𝑧 − 𝑎)2 + 
𝑓′′′ (𝑎) 

(𝑧 − 𝑎)3 + … … .. _(1) 

 

𝑝𝑢𝑡 𝑎 = −i 

2! 3! 
 
 
 

′ 
𝑓′′(−𝑖) 

 
 

 

 
𝑓′′′(−𝑖) 

 

𝑓(𝑧) = 𝑓(−𝑖) + 𝑓 (−𝑖)(𝑧 + 𝑖) + (𝑧 + 𝑖)2 + 
2! 

(𝑧 + 𝑖)3 + 
3! 

 

𝑓(𝑧) =  
1 

(1+𝑧)2 

⇒ 𝑓(−𝑖) = 
𝑖
 

2 

 
 
 

𝑓′(𝑧) =  
−2 

(1+𝑧)3 

⇒ 𝑓′(−𝑖) = 
−1 .2!

 
(1−𝑖)3 

 
 
 

𝑓′′(𝑧) =  
6 

(1+𝑧)4 

⇒ 𝑓′′(−𝑖) = 
3!

 
(1−𝑖)4 

Sub. All above in (1) then 

𝑓(𝑧) = 
𝑖 

+ 
−1 .2! 

(𝑧 + 𝑖) + 
3!

 

 
 

(𝑧 + 𝑖)2 + …………………. 

2 (1−𝑖)3 (1−𝑖)4 

 
3. Expand  𝒛 

(𝒛+𝟏)(𝒛−𝟐) 
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about 𝒛 = 𝟏 (or) 

Write the Taylor’s series expansion of 𝒛 
(𝒛+𝟏)(𝒛−𝟐) 

about 𝒛 = 𝟏 

Sol: Given 𝑓(𝑧) = 
𝑧

 
(𝑧+1)(𝑧−2) 

& a=1 
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𝑧 

(𝑧+1)(𝑧−2) 
= 

𝐴 

𝑧+1 
+ 

𝐵 

𝑧−2 
(by partial fractions) 

 
 

𝑧 

(𝑧+1)(𝑧−2) 
= 𝐴(𝑧−2)+𝐵(𝑍+1) ⇒ 𝑧 = 𝐴(𝑧 − 2) + 𝐵(𝑍 + 1) 

(𝑧+1)(𝑧−2) 

 

 

on solving it 𝐴 = 1/3 , 𝐵 = 2/3 

𝑧 

(𝑧+1)(𝑧−2) 
= 

2 

3(𝑧+1) 
+ 

1 

3(𝑧−2) 

 

∴ 𝑓(𝑧) =  
2 

3(𝑧+1) 
+ 

1 

3(𝑧−2) 

Now let 𝑧 − 1 = 𝑤 ⇒ 𝑧 = 1 + 𝑤 

= 
2 

3(𝑤+2) 
+ 

1 

3(𝑤−1) 

1 [ 𝑤 −1 1 [  
   

 
]−1 

= 1 +   ] 
3 2 

− 1 + 𝑤 
3 

= 1 [1 − 
𝑤 

+ 
𝑤2 

− 
𝑤3 

+ … … … . . ]- 1 [1 + 𝑤 + 𝑤2 + 𝑤3 + ⋯ ] 
3 2 4 8 3 

( if |
𝑤

| < 1 ⇒ |𝑤| < 1 ; |𝑤| < 2 ⇒ |𝑤| < 1 ) 
2 

𝑓(𝑧) = 
1 

[1 − 
𝑧−1 

+ 
(𝑧−1)2 

− 
(𝑧−1)3 

+ … . . ]- 1 [1 + (𝑧 − 1) + (𝑧 − 1)2 + … . . ] 
3 2 4 8 3 

i.e., this series is valid in the region |𝑧 − 1| < 1 

Assignment Questions: 

1. Find the Taylor’s series for 𝑧 
𝑧+2 

above 𝑧 = 1. Also find the region of convergence. 

2. Expand log 𝑧 by Taylor’s Series about 𝑧 = 1 

3. Obtain the expansion of 1 
(𝑧−1)(𝑧−3) 

the region of convergence. 

in a Taylor’s series in power of (𝑍 − 4) and determine 

4.   Expand 𝑓(𝑧) = 
1

 
𝑧2−𝑧−6 

about (𝑖) 𝑧 = −1 (𝑖𝑖) 𝑧 = 1 

5. Find the Taylor’s series expansion of 𝑓(𝑧) = 
2𝑧3+1 

about point (𝑖) 𝑧 = −𝑖 (𝑖𝑖) 𝑧 = 1 
𝑧2+𝑧 

 
 

Laurent’s series Expansion: we have seen under Taylors series that if 𝑓(𝑧) is analytic at 

𝑧 = 𝑎, we can have a series expansion of 𝑓 (𝑧) in non-negative powers of (𝑧 − 𝑎) which is 

valid in a region given by |𝑧 − 𝑎| < 𝑅 for suitable 𝑅. 
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Laurent’s theorem gives a procedure to expand a given function in powers of (𝑧 − 𝑎). 

The series expansion may have positive as well as negative powers. 

Laurent’s Theorem: 
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Let C1 and C2 be two circular given by |𝑧′ − 𝑧0| = 𝑟 and |𝑧′ − 𝑧0| < 𝑅 respectively 

where 𝑟 < 𝑅. 

Let 𝑓(𝑧) be analytic on C1 and C2 throughout the region between the two circles. Let Z 

be any point in the ring shaped region between the two circles C1 and C2 . 

then 

𝑓(𝑧) = ∑∞ 𝑎 (𝑧 − 𝑧 )𝑛 + ∑∞      𝑏𝑛  

𝑛=1     𝑛 0 𝑛=1 (𝑧−𝑧0)𝑛 

which is called Laurent’s series expansion of f(z) about z=𝑧0. 

where 𝑎𝑛 =   
1 

2𝜋𝑖 

𝑓(𝑧𝘍) 
∮

𝑐1 (𝑧𝘍−𝑧0)𝑛+1 

 

𝑑𝑧′ 

and 𝑏𝑛 =   
1 

2𝜋𝑖 

𝑓(𝑧𝘍) 
∮

𝑐2 (𝑧𝘍−𝑧0)−𝑛+1 
𝑑𝑧′ 

where integrals are taken around C1 and C2 in the anti clockwise direction. 

Problems: 

1. Find Laurent’s series for 𝒇(𝒛) = 
𝟏

 
𝒛𝟐(𝟏−𝒛) 

& Find the region of convergence (or) Find 

two Laurent’s series expansion in powers of 𝒛 for 𝒇(𝒛) = 
𝟏

 
𝒛𝟐(𝟏−𝒛) 

& specify the 

regions in which these expansions are valid. 

Sol: Given 𝑓(𝑧) = 
1

 
𝑧2(1−𝑧) 

The singular points are z=0 and z=1 

Now 𝑓(𝑧) = 
1

 
𝑧2(1−𝑧) 

= 
1 

(1 − 𝑧)−1 
𝑧2 

 
= 1 [1+z+𝑧2+ .............. ] valid only if 𝑧 ≠ 0 & |𝑧| < 1 

𝑧2 

 
= 1 + 1 + 1 + z + 𝑧2 + ............... s valid only if 0 < |𝑧| < 1 

𝑧2 

= ∑∞ 
𝑧 

𝑧𝑛−2 if 0 < |𝑧| < 1 

𝑛=0 

which is one Laurents series expansion in powers of Z. 

𝑓(𝑧) = 
1

 
𝑧2(1−𝑧) 

= 
−1 

𝑧2(𝑧−1) 

 

= 
−1 

 

 
= 

−1 

 

= 
−1 

(1 − 
1
)

−1

 
  

𝑧2 
1 

.𝑧 (1−
𝑧
) 𝑧3 

1 
(1−

𝑧
) 𝑧3 𝑧 

= − ( 
1 

+ 
1 

+ 
1

 + ................... ) if |𝑧| > 1 

𝑧3 𝑧4 𝑧5 

∞ 
𝑛=0 𝑧

−𝑛−3 if |𝑧| > 1 = - ∑ 
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= - ∑∞ (𝑧 − 0)−𝑛−3 if |𝑧| > 1 
𝑛=0 

Only principal part analytic part is not there 

This is the another Laurent’s series expansion in powers of z. 

2. Expand 𝒇(𝒛) = 
𝟏

 
𝒛𝟐−𝟑𝒛+𝟐 

in the region (i) 𝟏 < |𝒛| < 2 (ii) 𝟎 < |𝒛 − 𝟏| < 1 



107  

1 1 

Sol: 𝑓(𝑧) = 
1

 
𝑧2−3𝑧+2 

= 
𝟏 

(𝒛−𝟏)(𝒛−𝟐) 
= 

𝑨 

𝒛−𝟏 
+ 

𝑩 

𝒛−𝟐 

A=-1, B=1 

∴ 𝑓(𝑧) = 
−𝟏

 
𝒛−𝟏 

+ 
𝟏 

𝒛−𝟐 

The singular points of f(z) are Z=1,2 

(i) Consider 1 < |𝑧| < 2 

i.e., 1 < |𝑧| , |𝑧| < 2 

|
1
| < 1 , |

𝑧
| < 1 

𝑧 

𝑓(𝑧) = 
1

 
𝑧−2 

2 

− 
1 

𝑧−1 

= 𝑧 − 1 
−2(1− ) 

2 
𝑧(1−

𝑧
) 

= 1 (1 − 
𝑧
)

−1 

− 
1 

(1 − 
1
)

−1

 
−2 2 

 

= 
1 𝑧 

 
  

𝑧 

𝑧   2 
 

 

𝑧 

𝑧   3 
 

 

 
1 1 1 2 

 
   

(1 + 
−2 

+ ( ) 
2 2 

+ ( ) 
2 

+ … … . ) − (1 + 
𝑧 𝑧 

+ ( ) 
𝑧 

+ … … … . ) 

valid only if |
1
| < 1 , |

𝑧
| < 1 

 
𝑛 𝑛+1 

= 1  ∑∞ (
𝑧
)  - ∑∞ (

1
) if 1 < |𝑧| < 2 

   

𝑧 2 

−2 𝑛=0    2 𝑛=0   𝑧 

This is the Laurent’s series expansion of 𝑓(𝑧) about z=0 (or) in powers of Z in the region 

1 < |𝑧| < 2 

(ii) Consider 0 < |𝑧 − 1| < 1 

We have 𝑓(𝑧) = 
−𝟏 

+ 
𝟏

 
𝒛−𝟏 𝒛−𝟐 

The function 𝑓(𝑧) is analytic 

in the ring shaped region 0 < |𝑧 − 1| < 1 

𝑓(𝑧) = 
−𝟏 

+ 
𝟏

 
𝒛−𝟏 (𝒛−𝟏)−𝟏 

= −𝟏 − (𝟏 − (𝒛 − 𝟏))−𝟏 
𝒛−𝟏 

= 
−𝟏 

𝒛−𝟏 
− (𝟏 − (𝒛 − 𝟏) + (𝒛 − 𝟏)𝟐 + … … … ) 

= −(𝟏 − 𝒛)−𝟏 − ∑∞ (𝑧 − 1)𝑛 
𝑛=0 

Principal part + Analytic part 

This is the Laurent’s series expansion of 𝑓(𝑧) about 𝑧 = 1 (or) in powers of (𝑧 − 1) in the 

region 0 < |𝑧 − 1| < 1 

3. Expand 𝟏 (𝒛𝟐+𝟏)(𝒛𝟐+𝟐) 
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in positive & negative powers of z if 1 < |𝑧| < √2 

Sol. Given 𝑓(𝑧) = 
𝟏

 
(𝒛𝟐+𝟏)(𝒛𝟐+𝟐) 

= 
𝟏 

(𝒛𝟐+𝟏) 
− 

𝟏 

(𝒛𝟐+𝟐) 

 
 

Given region is 1 < |𝑧| < √2 
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|1| 𝑧   

2 
, 

𝑧2(1+
 1 

) 

i.e., 1 < |𝑧| , |𝑧| < √2 

< 1 , | | < 1 
 

𝑧 √2 

 1 𝑧2 
|   | < 1 | | < 1 
𝑧 2 

1 1 
𝑓(𝑧) = 

(𝑧2 + 1) 
− 

(𝑧2 + 2) 

= 
1 

𝑧2 

− 
1 

2(1+
𝑧2

) 
2 

 
−1 

=
 1 1 1 𝑧2   −1 

 
 

𝑧2 (1 + 
𝑧2) −   (1 + ) 

2 2 

=  1 [1 − 
1

 + 
1 

−   
1 + … … … . ] − 

1 
[1 − 

𝑧2 

+ 
𝑧4 

− 
𝑧6 

+ … … … … . . ] 

𝑧2 𝑧2 𝑧4 𝑧6 2 2 22 23 

𝑓(𝑧) = ∑∞ (−1)𝑛 (
1
)

2𝑛+2

+ ∑∞ (−1)𝑛+1  𝑧2𝑛

 
 

𝑛=0 𝑧 𝑛=0 2𝑛+1 

 

  

Principal part of Laurent’s series Analytic part of Laurent’s series 

Assignment Problems: 

1. Obtain all the Laurent’s series of the function 7𝑧−2 
(𝑧+1)𝑧(𝑧−2) 

about 𝑧 = −1 

2. Expand 1 
𝑧(𝑧2−3𝑧+2) 

in the region (a) 1 ≤ |𝑧| ≤ 2 (b) 0 ≤ |𝑧| ≤ 1 (c) |𝑧| ≥ 2 

3. Find the Laurent’s series expansion of the function 𝑓(𝑧) = 
𝑧2−6𝑧−1

 
(𝑧−1)(𝑧−3)(𝑧+2) 

in the 

region 3 ≤ |𝑧 + 2| ≤ 5 

 
 
 
 
 
 
 
 

Contour Integration 

We have studied the functions which are analytic in a given region. But there are 

several functions which are not analytic at certain points of its domain. Such exceptional 

points are called the ‘singularities’ of the function & a type of a singular point is called a 

‘Pole’. Now we study above different types of singularities & finding residues of a function 

at a pole. Also we prove Residue theorem which is useful to evaluate certain real integrals. 
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Definition: 

Zero (or) root of analytic function: It is a value of Z such that 𝑓(𝑧) = 0 (or) A point ‘a’ is 

called a zero of an analytic function 𝑓(𝑧) if 𝑓(𝑎) = 0. 
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Ex: 𝑓(𝑧) = 𝑧 − 1, here 𝑓(1) = 0 ∴ ‘1’ is called zero (or) root of 𝑓(𝑧) 

Zero of nth order : Let 𝑓(𝑧) be analytic function, if the root ‘a’ of 𝑓(𝑧) repeated ‘n’ times 

then ‘𝑎’ is called root (or) zero of the nth order. & we write it as 𝑓(𝑧) = (𝑧 − 𝑎)𝑚𝜙(𝑧) where 

𝜙(𝑧) ≠ 0. 

Examples: 

1. 𝑓(𝑧) = (𝑧 − 1)3, 𝑓(1) = 0, Hence ‘1’ is called zero of 3rd order. 

2. 𝑓(𝑧) =
 1 

, then 𝑓(∞) = 0, Hence ‘∞’ is called zero of order 1, it is a simple pole. 
1−𝑧 

3. 𝑓(𝑧) = 𝑠𝑖𝑛𝑧, the zeros of f(z) are z=0, ±𝜋, ±2𝜋, ±3𝜋, ±4𝜋 … … … .. 

4. 𝑓(𝑧) = 𝑒𝑡𝑎𝑛𝑧 has no zeros (∵ 𝑒𝑧 ≠ 0) 

Singular Point: A singular point of a function 𝑓(𝑧) is the point at which the function 𝑓(𝑧) is 

not analytic. 

(or) 

A point ‘𝑎’ is said to be a singularity of 𝑓(𝑧) if 𝑓(𝑧) is not analytic at ‘𝑎’ 

Singularities are classical into two types: 

(i) Isolated Singularity 

(ii) Non- isolated singularity 

Isolated singularity: A point 𝑧 = 𝑎 is called an isolated singularity of an analytic function 

𝑓(𝑧) if (i) 𝑓(𝑧) is not analytic at ‘𝑎’ 

(𝑖𝑖) 𝑓(𝑧) is analytic in the deleted neighborhood of 𝑧 = 𝑎 

Ex.1. 𝒇(𝒛) = 
𝟏

 
𝒛−𝟏 

 

Here 𝑧 = 1 is a singularity of 𝑓(𝑧) 

 
Further 𝑧 = 1 is a isolated singularity of 𝑓(𝑧) since 𝑓(𝑧) is analytic in the deleted 

neighborhood of 𝑧 = 1. 

 
Ex. 2. 𝒇(𝒛) =  

𝟏 

(𝒛−𝟏)(𝒛−𝟐) 

 

Here 𝑧 = 1, 2 are singularities of 𝑓(𝑧) 

 
Further 𝑧 = 1,2 are isolated singularity of 𝑓(𝑧) since 𝑓(𝑧) is analytic in the deleted 

neighborhood of 𝑧 = 1,2. 

Ex.3. 𝒇(𝒛) = 
𝒆𝒛

 

𝒛𝟐+𝟏 
 

Here 𝑧 = ±𝑖 are two isolated singular points of 𝑓(𝑧) 
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𝟏 

Ex.4. 𝒇(𝒛) = 
𝟐

 
𝐬𝐢𝐧 𝒛 

 

The isolated singular points are z = ±𝜋, ±2𝜋, ±3𝜋, ±4𝜋 … … … .. 

 
Non-Isolated Singularity: A Singularity which is not isolated is called a non isolated 

singularity. 

i.e., A singularity ‘𝑎’ of 𝑓(𝑧) is said to be a non-isolated singularity if every neighborhood of 

‘𝑎’ contains a singularity other than‘𝑎’. 
 

Ex. 𝒇(𝒛) = 
𝟏

 
𝐬𝐢𝐧(

𝒛
) 

 

sin (
1
) = 0 ⇒ 

1 
= ±𝑛𝜋 ⇒z= 1 , n=±1, ±2, ±3, ±4 … … … .. 

𝑧 𝑧 𝑛𝜋 

 

The singularities of 𝑓(𝑧) are 1 
𝑛𝜋 

, n=±1, ±2, ±3, ±4 … … … .. 

 

It may be noted that 𝐿𝑡 
1 

= 0 
 

𝑛→∞ 𝑛𝜋 

 

i.e., z=0 is the limit sequence of singularity. 
 

∴ Every neighborhood of ‘0’ contains a singularity 1 
𝑛𝜋 

for sufficiently large ‘n’ 

 

∴ z=0 is a non- isolated singularity. 

 
Note: If 𝑧 = 𝑎 is an isolated singularity of 𝑓(𝑧), then f(z) is analytic in deleted 

neighborhood say 0 < |𝑧 − 𝑎| < 𝑅, R > 0 

∴ 𝑓(𝑧) has Laurent’s expansion which is valid in the annulus 0 < |𝑧 − 𝑎| < 𝑅 

 
We know that the Laurent’s series expansion of 𝑓(𝑧) is 

 

𝑓(𝑧) = ∑∞ 𝑎 (𝑧 − 𝑎)𝑛 + ∑∞     𝑏𝑛  valid in 0 < |𝑧 − 𝑎| < 𝑅 

𝑛=1     𝑛 𝑛=1 (𝑧−𝑎)𝑛 

 

In this expansion ∑∞ 𝑎 (𝑧 − 𝑎)𝑛 is called the analytic part and ∑∞     𝑏𝑛  is called the 

𝑛=1     𝑛 𝑛=1 (𝑧−𝑎)𝑛 

Principal part of the expansion. 

 
1. Removable Singularity: If the principle part of the Laurent’s expansion of 𝑓(𝑧) around 
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𝑛=1 

the singular point 𝑧 = 𝑎contains no terms. Then singularity is said to be a ‘Removable 

Singularity” of 𝑓(𝑧). 

 

In this case 𝑓(𝑧)= ∑∞ 𝑎𝑛(𝑧 − 𝑎)𝑛 
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In this case the singularity can be removed by appropriately defining the function 𝑓(𝑧) at 

𝑧 = 𝑎 in such a way that it becomes analytic at 𝑧 = 0, such a singularity is called removable 

singularity. 

Note: If 𝐿𝑡𝑧→𝑎𝑓(𝑧) = 𝑓𝑖𝑛𝑖𝑡𝑒 then 𝑧 = 𝑎 is a removable singularity. 

 
Ex.1: If 𝒇(𝒛) = 

𝟏−𝑪𝒐𝒔 𝒛
 

𝒛 
 

Hence 𝑧 = 0 is isolated singularity of 𝑓(𝑧) 
 

𝐿𝑡𝑧→0 𝑓(𝑧) = 𝐿𝑡𝑧→0 
1−𝐶𝑜𝑠 𝑧 

 
 

𝑧 
(

0  
𝑓𝑜𝑟𝑚) 

0 

 

= 𝐿𝑡𝑧→0 
sin 𝑧 

1 
(𝐿 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑠 𝑅𝑢𝑙𝑒) 

 

= 0 (finite) 

 
∴ 𝑧 = 0 is called removable singularity of 𝑓(𝑧) 

 
Ex.2: If 𝒇(𝒛) = 

𝑺𝒊𝒏𝒛
 

𝒛 
 

z=0 is removable singularity 

 
2. Pole: If the principal part of Laurent’s series expansion of 𝑓(𝑧) around singular point 𝑧 = 

𝑎. Then 𝑧 = 𝑎 is called a pole. 

- If 𝑏𝑚 ≠ 0 & 𝑏𝑘 = 0 for 𝑘 = 𝑚 + 1, 𝑚 + 2, … … … … 

Then 𝑧 = 𝑎 is called a ple of order ‘𝑚’ 

- A pole of order 1 is called a simple pole. 

 

Ex: 𝒇(𝒛) =  
𝒛𝟐 

(𝒛−𝟏)(𝒛+𝟐)𝟐 

 

Here, 𝑧 = 1 , −2 are isolated singular points 

Hence 𝑧 = 1 is a simple pole 

𝑧 = −2 is a pole of order 2 

 
Essential Singularity: If the principle part of the Laurent’s series expansion of 𝑓(𝑧)around 

𝑧 = 𝑎 (Singular point) contains infinitely many terms then 𝑧 = 𝑎 is called an Essential 

singularity of 𝑓(𝑧). 

Example for Removable singularity, pole, Essential singularity: 
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−𝟏⁄𝒛 

2 

Ex 1: 𝐟(𝐳) = 
𝐳𝟐−𝟐𝐳+𝟑

 = 
z(z−2)+3 

= 𝑧 + 
3 

𝐳−𝟐 z−2 𝑧−2 

 

Hence 𝑧 = 2 is a singular point & it is Isolated 

 
f(z) = 𝑧 + 3(𝑧 − 2)−1 

 
which is Laurent’s series expansion of f(z) around 𝑧 = 2. It contains only one –ve 

power of order one. 

∴ 𝑧 = 2 is called a simple pole. 

 

Ex 2: 𝒇(𝒛) = 𝒆
𝟏⁄𝒛 = 𝟏 

𝒆 
 

The singular point are given by 𝑒
−1⁄𝑧 = 0 

 
⇒ 

1 
= ∞ 

𝑧 

 

⇒ 𝑧 = 0 

 
𝑧 = 0 is the Singular point of 𝑓(𝑧) & it is Isolated. 

 

Now 𝑓(𝑧) = 𝑒
1⁄𝑧= 1 + 1 +1 (

1
)  + 1 

(
1
)

 + … … … … .. if 0 < |𝑧| < ∞ 

𝑧     2!    𝑧 3!   𝑧 
 

= ∑∞ 
1 

(𝑧 − 0)−𝑛 
 

𝑛=0 𝑛! 

 

which is Laurent’s Series expansion of 𝑓(𝑧) above 𝑧 = 0 & It contains infinitely 

many –ve powers of (𝑧 − 0) (principle part contains Infinite no. of terms) 

∴ 𝑧 = 0 is called Essential Singularity of 𝑓(𝑧). 

 
Singularity at Infinity: Let the function is f(z), to find the singularitites of f(z) at z=∞ then 

put 𝑧 = 
1

 
𝑡 

in 𝑓(𝑧). 

 

Then 𝑓(𝑧) = 𝑓 (
1
) = 𝐹(𝑡) [say] 

𝑡 
 

Now the singularity of 𝐹(𝑡) at 𝑡 = 0 is the singularity of 𝐹(𝑧) at 𝑧 = ∞ 

 
Laurent’s Theorem: 

Let C1 and C2 be two circular given by |𝑧′ − 𝑎| = 𝑟1 and |𝑧′ − 𝑎| < 𝑟2 respectively 

where 𝑟2 < 𝑟1. 

3 
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Let f(z) be analytic on C1 and C2 throughout the region between the two circles. Let Z 

be any point in the ring shaped region between the two circles C1 and C2 . then 

𝑓(𝑧) = ∑∞ 𝑎 (𝑧 − 𝑎)𝑛 + ∑∞     𝑏𝑛  which is called Laurent’s series expansion of f(z) 

𝑛=1     𝑛 
 

about z=a. 

𝑛=1 (𝑧−𝑎)𝑛 

where 𝑎𝑛 =   
1 

2𝜋𝑖 

𝑓(𝑧𝘍) 
∮

𝑐1 (𝑧𝘍−𝑎)𝑛+1 
𝑑𝑧′  and 𝑏𝑛 =   

1 

2𝜋𝑖 

𝑓(𝑧𝘍) 
∮

𝑐2 (𝑧𝘍−𝑎)−𝑛+1 

 

𝑑𝑧′ 

where the integrals are taken around C1 and C2 in the anti clockwise direction. 

Residue at a pole: Let 𝑧 = 𝑎 be the pole of a function 𝑓(𝑧) then residue of 𝑓(𝑧) at 𝑧 = 𝑎 is 

denoted by 𝑅𝑒𝑠𝑧=𝑎 [𝑓(𝑧)] and it is defined as the coefficient of 1 
𝑧−𝑎 

in the Laurent’s series 

expansion i.e., 𝑏1is the residue 

 

i.e., 𝑏1 = 
1 

2𝜋𝑖 
∫𝑐   

𝑓(𝑧) 

 

∫𝑐 
𝑓(𝑧) = 2𝜋𝑖 × 𝑏1=2𝜋𝑖 × 𝑅𝑒𝑠𝑧=𝑎[𝑓(𝑧)] 

 

- if 𝑧 = 𝑎 is the simple pole of 𝑓(𝑧) 

then 𝑅𝑒𝑠𝑧=𝑎[𝑓(𝑧)] = 𝐿𝑡𝑧→𝑎(𝑧 − 𝑎)𝑓(𝑧) 

 

- if 𝑧 = 𝑎 is the pole of order ‘𝑚’ of 𝑓(𝑧) 

then 𝑅𝑒𝑠𝑧=𝑎 [𝑓(𝑧)] = 
1

 
(𝑚−1)! 

𝐿𝑡𝑧→𝑎 [  
𝑑𝑚 

𝑑𝑧𝑚−1 (𝑧 − 𝑎)𝑚. 𝑓(𝑧)] 

 
 
 
 
 

 

Cauchy’s Residue Theorem 

 
Statement: Let C be any positively oriented simple closed contour. Let f(z) is analytic on & 

with in ‘C’ except at a finite number of poles 𝑧1, 𝑧2, … … 𝑧𝑛 within ‘c’ and 𝑅1, 𝑅2, … … 𝑅𝑛 be 

the residue of 𝑓(𝑧) at these poles, then ∫𝑐 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖 [𝑅1 + 𝑅2 + … … +𝑅𝑛] 

(or) 

 

∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖[ 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛 𝐶] 

𝑐 

Proof: Let 𝑐1, 𝑐2, … … 𝑐𝑛 be the circles with center at 𝑧1, 𝑧2, … … 𝑧𝑛 respectively 
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The raddi so small therefore all circle 𝑐1, 𝑐2, … … 𝑐𝑛 are entirely lie in C 

and They do not overlap. 
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1 2 2 

Now f(z) is analytic within the region enclosed by the curve ‘c’ between these circles. 

 
∴ By Cauchy’s theorem for multiply connected regions we have 

 

∫𝑐 
𝑓(𝑧) 𝑑𝑧 = ∫𝑐  

𝑓(𝑧) 𝑑𝑧 + ∫𝑐  
𝑓(𝑧) 𝑑𝑧 + ⋯ … … … . . + ∫𝑐  

𝑓(𝑧) 𝑑𝑧   (1) 

 

But by definition we have 

 
1 ∫   𝑓(𝑧) 𝑑𝑧 = 𝑅𝑒𝑠 

 

[𝑓(𝑧)] 

2𝜋𝑖 𝑐1 𝑧=𝑧1 

 

. 

. 

. 

. 

1 ∫   𝑓(𝑧) 𝑑𝑧 = 𝑅𝑒𝑠 
 

 
 
 
 
 

 
[𝑓(𝑧)] 

2𝜋𝑖 𝑐𝑛 𝑧=𝑧𝑛 

 

∫𝑐 
𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖𝑅𝑒𝑠𝑧=𝑧1 

[𝑓(𝑧)] + 2𝜋𝑖𝑅𝑒𝑠𝑧=𝑧2 
[𝑓(𝑧)]+ …………..+ 2𝜋𝑖𝑅𝑒𝑠𝑧=𝑧𝑛 

[𝑓(𝑧)] 

 
= 2𝜋𝑖 {𝑅𝑒𝑠𝑧=𝑧1 

[𝑓(𝑧)] + 𝑅𝑒𝑠𝑧=𝑧2 
[𝑓(𝑧)] + … … … … . . + 𝑅𝑒𝑠𝑧=𝑧𝑛

[𝑓(𝑧)]} 

 
= 2𝜋𝑖 [𝑅1 + 𝑅2 + … … +𝑅𝑛] 

 
= 2𝜋𝑖[ 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛 𝐶] 

 

Hence Proved 

 
Problems related to poles & Residues: 

 

1. Expand 𝒇(𝒛) = 
𝒆𝒛

 

(𝒛−𝟏)𝟐 
as a Laurent’s series about 𝒛 = 𝟏 & hence find the residue at 

that point. 

 

Sol: Given 𝑓(𝑧) = 
𝑒𝑧

 

(𝑧−1)2 

 
 

& 𝑧 = 1 

 

It is required to find Laurent’s series expansion around 𝑧 = 1 

(i.e., in powers of ( 𝑧 − 1)) 

𝑓(𝑧) = (𝑧 − 1)−2𝑒(𝑧−1)+1 = (𝑧 − 1)−2𝑒(𝑧−1) . 𝑒 

= 𝑒. (𝑧 − 1)−2 [1 + (𝑧 − 1) + 
(𝑧−1)2 

+ … … … … ] 
2! 
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= 
𝑒 

(𝑧−1)2 

[1 + (𝑧 − 1) + 
(𝑧−1)2 

+ … … … … ] 
2! 

= 
𝑒 

+ 
𝑒 

+
𝑒  

+ 
𝑒(𝑧−1) 

+ … … … …
 

(𝑧−1)2 (𝑧−1)     2! 9 
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 𝑒 𝑒(𝑧−1) 𝑒 
[ + + … … … … . . ] + [ + 

𝑒 + ⋯ … … … … ] 

2! 9 (𝑧−1) (𝑧−1)2 

 

  
 
 

+𝑣𝑒 powers of (𝑧 − 1) −𝑣𝑒 powers of (𝑧 − 1) 
Analytical part Principle part 

 

Given 𝑓(𝑧) = 
𝑒𝑧

 

(𝑧−1)2 
, 𝑧 = 1 is a pole order 2 

& Residue of 𝑓(𝑧) at 𝑧 = 1 is coefficient of 1 
(𝑧−1) 

in Laurent’s series expansion 

 

i.e., 𝑅𝑒𝑠𝑧=1[𝑓(𝑧)] = 𝑒 

 
2. Find the poles of the function (i) 𝒛 

𝐜𝐨𝐬 𝒛 

 
 
(ii) 𝐜𝐨𝐭 𝒛 (iii) 𝒛 

𝒛𝟐−𝟑𝒛+𝟐 

 

Sol. (i) 𝑓(𝑧) = 
𝒛

 
𝐜𝐨𝐬 𝒛 

 

Poles of 𝑓(𝑧) are given by denominator = 0 

i.e., cos 𝑧 = 0 

i.e., = (2𝑛 + 1) 
𝜋 

, 𝑛 = 0 ± 1, ±2 … … .. 
2 

 

∴ The poles are 𝑧 = ± 
𝜋
,± 

3𝜋
, ....... ,which are poles of order 1( simple poles). 

2 2 

 

(ii) 𝑓(𝑧) = cot 𝑧 

𝑓(𝑧) = cot 𝑧 = 

 

𝑐𝑜𝑠𝑧 
 

 

𝑠𝑖𝑛𝑧 

Poles are given by 𝑠𝑖𝑛𝑧 = 0 

i.e., 𝑧 = 𝑛𝜋 where 𝑛 = 0 ± 1, ±2 … … .. 

 
∴ The poles are 𝑧 = 0, ±𝜋,± 2𝜋, ,± 3𝜋 .............. , which are poles of order 1( simple poles). 

 
(iii) 𝑓(𝑧)= 𝒛  

𝒛𝟐−𝟑𝒛+𝟐 
 

Poles are given by 𝑧2 − 3𝑧 + 2 = 0 

 
𝑧 = 1,2 are called poles, which are simple poles. 

 

3. Find the poles of the function 𝒇(𝒛)= 𝒛
𝟑

 

(𝒛−𝟏)𝟒(𝒛−𝟐)(𝒛−𝟑) 

= 
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and residues at the poles. 
 

Sol: Given 𝑓(𝑧)= 𝑧
3

 

(𝑧−1)4(𝑧−2)(𝑧−3) 
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The poles of 𝑓(𝑧) are given by (𝑧 − 1)4(𝑧 − 2)(𝑧 − 3) = 0 

⇒ 𝑧 = 1, 2, 3 

ℎ𝑒𝑟𝑒 𝑧 = 1 is a pole of order 4, 𝑧 = 2, 3 are poles of order 1. 

i) Residue at pole 𝑧 = 2 

w.k.t If 𝑧 = 𝑎 is apole of order 1 then 

𝑅𝑒𝑠𝑧=𝑎[𝑓(𝑧)] = 𝐿𝑡𝑧→𝑎(𝑧 − 𝑎)𝑓(𝑧) 

𝑅𝑒𝑠𝑧=2 [𝑓(𝑧)] = 𝐿𝑡𝑧→2 (𝑧 − 2)𝑓(𝑧)= 𝐿𝑡𝑧→2 (𝑧 − 2) 
𝑧3

 

(𝑧−1)4(𝑧−2)(𝑧−3) 
=   

8 

1(−1) 

 

= −8 

ii) Residue at pole 𝑧 = 3 
 

𝑅𝑒𝑠𝑧=3 [𝑓(𝑧)] = 𝐿𝑡𝑧→3 (𝑧 − 3)𝑓(𝑧)= 𝐿𝑡𝑧→3 (𝑧 − 3) 
𝑧3

 

(𝑧−1)4(𝑧−2)(𝑧−3) 
= 

27 

16.1 
= 

27 

16 

iii) Residue at pole 𝑧 = 1 

Here z=1 is apole of order ‘4’ 

w.k.t if 𝑧 = 𝑎 is pole of order ‘m’ then 

then 𝑅𝑒𝑠𝑧=𝑎 [𝑓(𝑧)] = 
1

 
(𝑚−1)! 

𝐿𝑡𝑧→𝑎 [  
𝑑𝑚 

𝑑𝑧𝑚−1 (𝑧 − 𝑎)𝑚. 𝑓(𝑧)] 

here 𝑚 = 4, 𝑎 = 1 
 
 

𝑅𝑒𝑠 [𝑓(𝑧)] = 
1 

𝐿𝑡 
 

[ 
𝑑3   

(𝑧 − 𝑎)4. 
𝒛𝟑 

] 
  

𝑧=1 3! 𝑧→1 𝑑𝑧3 (𝒛−𝟏)𝟒(𝒛−𝟐)(𝒛−𝟑) 

 
 

𝑅𝑒𝑠 [𝑓(𝑧)] = 
1 

𝐿𝑡 
 

[ 
𝑑3   

. 
𝒛𝟑 

] 
  

(1) 
 

 

𝑧=1 6 𝑧→1 𝑑𝑧3     (𝒛−𝟐)(𝒛−𝟑) 

 
 

Let us find out 𝑑
3   

[ 
𝒛𝟑 

] 
𝑑𝑧3     (𝒛−𝟐)(𝒛−𝟑) 

 
 

𝑧3 
 

 

(𝑧−2)(𝑧−3) 
= 𝐴𝑧 + 𝐵 + 𝐶 

𝑧−2 
+ 

𝐷 

𝑧−3 

Hence 𝐴 = 1, 𝐵 = 5, 𝐶 = −8, 𝐷 = 27 

𝑧3 
 

 

(𝑧−2)(𝑧−3) 
= 𝑧 + 5 - 8 

𝑧−2 
+ 

27 

𝑧−3 

By solving 𝑑
3 

[  
𝒛𝟑

 
 

] = 
48 

− 
162 

 

 
(2) 

𝑑𝑧3    (𝒛−𝟐)(𝒛−𝟑) 

Sub. (2) in (1) 

(𝑧−2)4 (𝑧−3)4         
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𝑅𝑒𝑠 
[𝑓(𝑧)] = 1 𝐿𝑡 

 

48 
− 

162 
  

𝑧=1 6 𝑧→1 (𝑧−2)4 (𝑧−3)4 

= 1 [48 − 
162

] 

 
𝑅𝑒𝑠𝑧=1 

6 16 
 

[𝑓(𝑧)] = 101 
16 
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4. Find the Residues of 𝒇(𝒛) = 
𝟏

 
𝒛(𝒆𝒛−𝟏) 

 

Sol. Given 𝑓(𝑧) = 
1

 
𝑧(𝑒𝑧−1) 

 

The poles of 𝑓(𝑧) are given by 𝑧(𝑒𝑧 − 1) = 0 

𝑧 = 0 or 𝑒𝑧 − 1 = 0 

𝑒𝑧 = 1 ⇒ 𝑒𝑧 = 𝑒2𝑛𝜋𝑖 , 𝑛 = 0, ±1, ±2 … …. 

𝑧 = 2𝑛𝜋𝑖 

∴ The poles are = 0, 2𝑛𝜋𝑖 , 𝑛 = 0, ±1, ±2 … …. 

When 𝑛 = 0 then 𝑧 = 0,0 

∴ 𝑧 = 0 is apole of order 2 

𝑓(𝑧) = 
1

 
𝑧(𝑒𝑧−1) 

1 
 

 

𝑧2  𝑧3 
𝑧[(1+𝑧+     +  + ……………….)−1] 

2     3! 

= 
1 

 

𝑧 
𝑧×𝑧[1+ + 

2 

 
1 

𝑧2 

3! 

 
𝑧 

+⋯…………….] 
 

𝑧2 −1 

= 
𝑧2 [1 + (

2 
+ 

3! 
+ ⋯ … … … … … )] 

=
 1  𝑧 𝑧2 

 
 

𝑧 𝑧2 2
 

 
 

𝑧2 [1 − (
2 

+ 
3! 

+ ⋯ … … … … … ) + (
2 

+ 
3! 

+ ⋯ … … … ) … … … . . ] 
 

= 1 [1 − 
𝑧 

+ (
1 

− 
1
) 𝑧2 + (− 

1 
+ 

1 
− 

1
) 𝑧3 + … … . . ] 

𝑧2 2! 4 6 24 6 8 

 

𝑓(𝑧) =   
1 

− 
1 

+ 
1 

+ 
1

 𝑧2+ …………. 

𝑧2 2𝑧 12 360 

 

Which is a Laurent’s series Expansion of 𝑓(𝑧) in powers of 𝑧. 
 

∴ 𝑅𝑒𝑠 [𝑓(𝑧)] = 𝐶𝑜𝑒𝑓𝑓𝑖𝑒𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 
1 

= − 
1

 
  

𝑧=0 𝑧 2 

 

Assignment Questions: 

 
Find the poles & the corresponding residues of 

 

(1) 𝑓(𝑧) = 
𝑒𝑧

 

(1+𝑧)2 

(2) 𝑓(𝑧) = 
𝑧2

 

𝑧4−1 

(3) 𝑓(𝑧) = 
𝑧2+2𝑧

 
(𝑧+1)2(𝑧2+4) 

= 
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(4) 𝑓(𝑧) =   
𝑧𝑒𝑧

 

(𝑧−1)3 

(5) 𝑓(𝑧) = 
𝑧2

 

(𝑧+1)2(𝑧+2) 
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Problems related to evaluation of integrals using residue theorem: 
 

1. Evaluate ∮ 
𝟒−𝟑𝒁

 
𝒁(𝒁−𝟏)(𝒁−𝟐) 

dz where ‘C’ is the circle|𝒛| = 𝟑/𝟐 using residue theorem. 

 

Sol: let   f(z) = 4−3𝑍 
𝑍(𝑍−1)(𝑍−2) 

 

The poles of f(z) are given by 𝑧(𝑧 − 1)(𝑧 − 2) = 0 ⇒ 𝑧 = 0,1,2 

 
𝑧 = 0,1,2 are the poles of order 1. 

 

The given curve 𝑐 is |𝑧| = 
3

 
2 

⇒ |𝑧 − 0| = 
3

 
2 

 

⇒ |𝑥 + 𝑖𝑦 − 0| = 3/2 

 
⇒ |(𝑥 − 0) + 𝑖𝑦|=3/2 

 

⇒ √(𝑥 − 0)2 + 𝑦2 =3/2 

⇒ (𝑥 − 0)2 + (𝑦 − 0)2 =1.5 

which is a circle with center (0,0) & 𝑟 = 1.5 

The poles 𝑧 = 0,1 are only lies inside the curve ′𝑐′ 

 
We required to find the residues at the poles 𝑧 = 0, 1 

 
Residue of 𝑓(𝑧) at 𝑧 = 0 : 

 

w.k.t 𝑅𝑒𝑠 𝑓(𝑧)𝑎𝑡 𝑧=𝑎 = 𝐿𝑡𝑧→𝑎(𝑧 − 𝑎)𝑓(𝑧) 
 

𝑅1= 𝑅𝑒𝑠 𝑓(𝑧) 
 
𝑎𝑡 𝑧=0 = 𝐿𝑡𝑧→0 (𝑧 − 0) 

4−3𝑍
 

𝑍(𝑍−1)(𝑍−2) 
= 4/2 = 2 ⇒   𝑅1 = 2 

 

Residue of f(z) at z=1 : 
 

𝑅2 = 𝑅𝑒𝑠 𝑓(𝑧) 
 
𝑎𝑡 𝑧=1 = 𝐿𝑡𝑧→1 (𝑧 − 1) 

4−3𝑍
 

𝑍(𝑍−1)(𝑍−2) 
=1/1(-1) = -1 ⇒ 𝑅2 = −1 

 

∴ By Cauchy Residue theorem: 
 

4 − 3𝑍 
∮ 

𝑍(𝑍 − 1)(𝑍 − 2) 
𝑑𝑧 = 2𝜋𝑖(𝑅1 + 𝑅2) 

= 2𝜋𝑖(2 − 1) 

 
= 2𝜋𝑖 
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Note: ∫ f(z)dz = 2πi(sum of residues ) 
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∫ 2. Obtain the Laurent’s Series for the function 𝒇(𝒛) = 
𝟏

 
𝒛𝟐 𝒔𝒊𝒏𝒉𝒛 

& evaluate 𝒅𝒛 
𝒛𝟐 𝒔𝒊𝒏𝒉𝒛 

where ‘C’ is the circle |𝒛 − 𝟏| = 𝟐 
 

Sol : Given 𝒇(𝒛) = 
𝟏

 
𝒛𝟐 𝒔𝒊𝒏𝒉𝒛 

 

= 
𝟏 

 

 
 
( since 𝑠𝑖𝑛ℎ𝑧 = 𝑧 + 

𝑧3 

+ 
𝑧5 

+ ⋯) 
  

𝟐 𝒛𝟑   𝒛𝟓 
 

  

3! 5! 

𝒛 (𝒛+
𝟑! 

+ 
𝟓! 

+⋯…… ) 

 

= 
𝟏 

𝑧3 [1+( 
𝑧2

 
 
𝑧4 

3! 
+ 

5! 
+⋯ )] 

 
1 𝑧2 𝑧4 −1 

= 
𝑧3 [1 + ( 

3! 
+ 

5! 
+ ⋯ )] 

= 1 [1 − ( 
𝑧2 

+ 
𝑧4 

+ ⋯ ) + (
𝑧2 

+ 
𝑧4 

+ ⋯ )2 … . ] 
𝑧3 3! 5! 3! 5! 

 

 

= 1  [1 − 
𝑧2 

− 
𝑧4

 

[since (1 + 𝑥)−1 = 1 − 𝑥 + 𝑥2 + 𝑥3 …] 

 
+ 

𝑧4 

… . ] 

𝑧3 6 120 36 

 

= 1 [1 − 
𝑧2 

+ ( 
1 

− 
1 

)𝑧4 … . ] 
𝑧3 6 36 120 

 

f(z) = 1 
𝑧3 

− 
1 

6𝑧 
+ 

7 

360 
𝑧4 … is called L.S exp of f(z) about 0 

 

The highest power of (z-0) is 3 

Therefore 𝑧 = 0 is a pole of circle 3 

The given circle c is |𝑧 − 1| = 2; |𝑥 + 𝑖𝑦 − 1| = 2; 
 
 

|𝑥 − 1 + 𝑖𝑦| = 2; √(𝑥 − 1)2 + 𝑦2 =2 at (1,0) 𝑟 = 2 
 

The pole 𝑧 = 0 lies inside 𝑐 
 

1 
𝑅1 = 𝑅𝑒𝑠 𝑓(𝑧)𝑎𝑡 𝑧=0 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 

𝑧 
𝑖𝑛 𝐿. 𝑆 𝑒𝑥𝑝 = −1/6 

By residue theorem ∫ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 ) 
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𝑑𝑧 1 𝜋𝑖 
∫ 

𝑧2 𝑠𝑖𝑛ℎ𝑧 
= 2𝜋𝑖(𝑅1) = 2𝜋𝑖 (− 

6
) = − 

3
 

 

3. Evaluate ∫ 
𝒅𝒛

 
𝒔𝒊𝒏𝒉𝒛 

, where  c is the circle |𝒛| = 𝟒 using residue theorem . 
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𝑐𝑜𝑠ℎ(𝜋𝑖) −1 

Sol: Given 𝑓(𝑧) = 
1

 
𝑠𝑖𝑛ℎ𝑧 

 

The poles of 𝑓(𝑧) are given by 𝑠𝑖𝑛ℎ𝑧 = 0 

 
Z = ± nπi , n= 0, ±1, ±2,….. 

 
Z = 0, πi, -πi, 2πi, -2πi ….. 

 
Which are the poles of order 1 

 
[(0,0) (0, 𝜋), (0, −𝜋), (0,2𝜋), (0, −2𝜋) … . ] 

 
The given curve  ‘C’ is |z| = 4 which is a circle with center (0,0) & 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟 = 4 

 
Here the only poles lies inside the curve “c” are z=0, πi, -πi, 

Residue at z=0: 

𝑅1 = 𝑅𝑒𝑠 𝑓(𝑧)𝑎𝑡 𝑧=0 = 𝑙𝑡 𝑧→0(𝑧 − 0)𝑓(𝑧) 
 

= 𝑙𝑡 
 
𝑧→0 

𝑧. 
1

 
𝑠𝑖𝑛ℎ𝑧 

 

= 0 is indeterminant form 
0 

 

= 𝑙𝑡 
 
𝑧→0 

1 
 

 

𝑐𝑜𝑠ℎ𝑧 
(L-hospital rule ) 

 

=   
1 

= 
1 

𝑐𝑜𝑠0 1 

 

𝑅1 = 1 
 

Residue at z= πi 

 

𝑅2 = 𝑅𝑒𝑠 𝑓(𝑧)𝑎𝑡 𝑧=𝜋𝑖 = 𝑙𝑡 𝑧→𝜋𝑖(𝑧 − 𝜋𝑖)𝑓(𝑧) 
 

= 𝑙𝑡 
 
𝑧→𝜋𝑖 

(𝑧 − 𝜋𝑖). (
   1    

) 
𝑠𝑖𝑛ℎ𝑧 

 

= 
(𝜋𝑖−𝜋𝑖)   

= 
0 

𝑠𝑖𝑛ℎ(𝜋𝑖) 0 
(indeterminant form ) 

 

= 𝑙𝑡 𝑧→𝜋𝑖 (   
1    

)=( 
𝑐𝑜𝑠ℎ𝑧 

1 
)= 

1    
= −1 

 

𝑅2 = −1 
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Similarly Residue at z= -πi is 𝑅3 = −1 
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𝟎 

By residue theorem ∫ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 ) 
 

1 
∫ 

𝑠𝑖𝑛ℎ𝑧 

 

𝑑𝑧 = 2𝜋𝑖(1 − 1 − 1 ) = −2𝜋𝑖 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Evaluation of Real Definite Integrals by Contour Integration: 

 
In this section, we consider the evaluation of certain types of real definite integrals. These 

integrals often arise in physical problems. To evaluate these integrals, we apply Residue 

theorem which is simple than the usual methods of integration. The process of evaluating a 

definite integral by making the parts of integration about a suitable contour (curve) in the 

complex plane is called contour integration. 

 

Type I: Integrals of the type ∫
𝟐𝝅 

𝑭(𝒄𝒐𝒔𝜽, 𝒔𝒊𝒏𝜽)𝒅𝜽 

 

Procedure: put 𝑧 = 𝑒𝑖𝜃 

Differentiate on both sides w.r.t ′𝜃′ 

𝑑𝑧   
=  𝑖𝑒𝑖𝜃   ⇒ 

𝑑𝑧 = 𝑑𝜃 ⇒ 𝑑𝜃 = 
𝑑𝑧

 

𝑑𝜃 𝑖𝑒𝑖𝜃 

 
𝑒𝑖𝜃+𝑒−𝑖𝜃 

 
𝑧+

1
 

𝑖𝑧 

We know that 𝑐𝑜𝑠𝜃 = 
 

𝑠𝑖𝑛𝜃 = 
𝑒𝑖𝜃−𝑒−𝑖𝜃 

2𝑖 

= 
2 

𝑧−
1

 

=      𝑧 
2𝑖 

      𝑧 

2 

Also since 0≤ 𝜃 ≤ 2𝜋 ⇒ 𝜃 travels on the entire unit circle & |𝑧| = |𝑒𝑖𝜃| = 1 

∴ ∫
2𝜋 

𝐹(𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃)𝑑𝜃= ∫   𝐹 [
1 

(𝑧 + 
1
) ,   

1 
(𝑧 − 

1
)] 

𝑑𝑧 
= ∫    𝑓(𝑧) 𝑑𝑧 (say) 

 
 

 

 
(1) 
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0 𝐶 2 𝑧 2𝑖 𝑧 𝑖𝑧 𝑐 

Where ‘C’ is the unit circle |𝑧| = 1 
 

By Residue Theorem : ∫𝑐 𝑓(𝑧) 𝑑𝑧 = 2πi×[𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 ]   (2) 
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0 

0 0 

From (1) & (2) 

∴ ∫
2𝜋 

𝐹(𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃)𝑑𝜃 = 2πi×[𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 ] 
 

Problems: 

 

1. Show by the method of residues 
𝝅 

∫𝟎 
𝒅𝜽 

 
 

𝒂+𝒃 
𝒄𝒐𝒔𝜽 

= 
𝝅 

√𝒂𝟐−𝒃𝟐 
(a>b>0) 

Show that 
𝟐𝝅 

∫𝟎 
𝒅𝜽 

 

 

𝒂+𝒃 
𝒄𝒐𝒔𝜽 

= 
𝟐𝝅 

√𝒂𝟐−𝒃𝟐 

 
Sol: we can write   

𝜋
 𝑑𝜃 1    2𝜋 = 

 
 

𝑑𝜃 (1) 

0  𝑎+𝑏 𝑐𝑜𝑠𝜃 2 
∫0 

 

𝑎+𝑏 𝑐𝑜𝑠𝜃 

 

Let C be the unit circle i.e., C: |𝑧| = 1 

 
Put 𝑧 = 𝑒𝑖𝜃 

 
Differentiate on both sides 

𝑑𝑧 = 𝑖𝑒𝑖𝜃 = 𝑖𝑧 ⇒ 𝑑𝜃 = 
𝑑𝑧

 
𝑑𝜃 

 
𝑐𝑜𝑠𝜃 = 

 
𝑒𝑖𝜃+𝑒−𝑖𝜃 

=
 

2 

 
𝑧+

1
 

      𝑧 = 
2 

𝑖𝑧 
 

𝑧2+1 

2𝑧 

 

Substitute all above values in equation (1) than 

 
𝜋 𝑑𝜃 1 2𝜋 𝑑𝜃 1 1 𝑑𝑧 

∫  
𝑎 + 𝑏 𝑐𝑜𝑠𝜃 

=  
2 

∫
 

= ∫ 
𝑎 + 𝑏 𝑐𝑜𝑠𝜃 2   𝐶 

 

𝑎 + 𝑏 [ 
𝑧2 + 1 

2𝑧 
𝑖𝑧 

 

= 
1 

∫ 
2 𝑑𝑧 (2) 

 
 

Let 𝑓(𝑧) = 
1

 
𝑏𝑧2+2𝑎𝑧+𝑏 

2𝑖   𝑐    𝑏𝑧2+2𝑎𝑧+𝑏 

 
The poles of 𝑓(𝑧) are given by 𝑏𝑧2 + 2𝑎𝑧 + 𝑏 = 0 

 
 

∴ The poles of f(z) are 𝑧 = 
−𝑎±√𝑎2−𝑏2

 

𝑏 
 

Which are poles of order ‘1’. 
 
 

  

Let α = 
−𝑎+√𝑎2−𝑏2 

𝑏 
and β = 

−𝑎− √𝑎2−𝑏2 

𝑏 

 

] 

∫ 
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Since a>b>0 ⇒ |β| > 1 ⇒ 1 > 
1

 
|β| 

⇒ 
1   

< 1 
|β| 

But we know that product of the roots 𝑐 = 
𝑏 

= 1 
𝑎 𝑏 

i.e., α.β=1 
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⇒ |α. β| = 1 

1 
⇒ |α| = 

|𝛽| 
< 1 

⇒ |α| < 1 

∴ ′𝛼′ lies inside the unit circle ‘c’ 

 
𝑅𝑒𝑠𝑖𝑑𝑢𝑒 𝑜𝑓 𝑓(𝑧)𝑎𝑡 𝑧 = 𝛼: 

 

𝑅1 = 𝑅𝑒𝑠𝑧=𝛼[𝑓(𝑧)] = 𝐿𝑡𝑧→𝛼(𝑧 − 𝛼)𝑓(𝑧) 

= 𝐿𝑡𝑧→𝛼 

= 𝐿𝑡𝑧→𝛼 

= 
1 

(𝑧 − 𝛼) 
1

 
𝑏𝑧2+2𝑎𝑧+𝑏 

(𝑧 − 𝛼) 
1

 
𝑏(𝑧−𝛼)(𝑧−𝛽) 

 
 

 
By Residue theorem 

𝑏(𝛼−𝛽) 
 

=
 1  

2√𝑎2−𝑏2 

 
 

((∵ 𝛼 − 𝛽 = 
2√𝑎2−𝑏2

) 
𝑏 

∫   𝑓(𝑧) 𝑑𝑧 = ∫ 
1

 = 2πi×[𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 ] 

𝑐 𝑐   𝑏𝑧2+2𝑎𝑧+𝑏 

= 2πi × 1 
2√𝑎2+𝑏2       

(3) 

Sub. (3) in (2) 

𝜋 𝑑𝜃 
∫ = 

1 
∫ 

1 𝑑𝑧= 1 ×πi × 2πi × 1 
 = 

𝜋 

0 𝑎+𝑏 𝑐𝑜𝑠𝜃 𝑖   𝑐 𝑏𝑧2+2𝑎𝑧+𝑏 𝑖 2√𝑎2+𝑏2 √𝑎2+𝑏2 

2. Evaluate 
∞

 𝒙𝟐 𝒅𝒙 using Residue theorem. 

∫
−∞ (𝒙𝟐+𝟏)(𝒙𝟐+𝟒) 

 

Sol: To evaluate the given integral, we consider 
 

𝑧2 
∫ 𝑑𝑧 = ∫   𝑓(𝑧)𝑑𝑧 

𝑐    (𝑧2+1)(𝑧2+4) 𝑐 

 

Where 𝐶 is the contour consisting of the semi-circle 𝐶𝑅 of radius 𝑅 together with the 

part of the real axis from – 𝑅 to 𝑅. 

Observe that the integrand has simple poles at 𝑧 = ±𝑖, 𝑧 = ±2𝑖. 

 
But 𝑧 = 𝑖, 𝑧 = 2𝑖 are the only two poles lie inside 𝐶. 

The residue of 𝑓(𝑧) at 𝑧 = 𝑖 is given by 
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lim[(𝑧 − 𝑖)𝑓(𝑧)] = lim [(𝑧 − 𝑖) 
𝑧2 

2 ] 

𝑧→𝑖 𝑧→𝑖 (𝑧 − 𝑖)(𝑧 + 𝑖)(𝑧 + 4) 
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∫ 

∫ 

= lim 
𝑧→𝑖 

𝑧2 
 

 

(𝑧+𝑖)(𝑧2+4) 
=  

−1 

(2𝑖)(3) 
= 

−1 

6𝑖 

 

The residue of 𝑓(𝑧) at 𝑧 = 2𝑖 is given by 
 

 
lim [(𝑧 − 2𝑖)𝑓(𝑧)] = lim [ 𝑧2 

2 ] 

𝑧→2𝑖 𝑧→2𝑖 (𝑧 + 2𝑖)(𝑧 + 1) 

 

= 
−4 

(−4+1)(4𝑖) 
= 

1 

3𝑖 

 

Thus by Residue theorem, 

 
 

∫ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖(𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝐶) 
𝑐 

 

−1 1 1 1 2𝜋 𝜋 

 
 

i.e.,   
𝑅
 

= 2𝜋𝑖 ( 
6𝑖 

+ 
3𝑖

) = 2𝜋 (
3 

− 
6

) = 

𝑓(𝑥)𝑑𝑥 + ∫   𝑓(𝑧)𝑑𝑧 = 
𝜋 

(since on real axis 𝑧 = 𝑥) 

6 
= 

3  
 

(1) 
 

 

−𝑅 𝑐𝑅 3 

 

Hence by making 𝑅 → ∞, equation (1) becomes 
 

∞ 𝑓(𝑥)𝑑𝑥 + lim ∫   𝑓(𝑧)𝑑𝑧 = 
𝜋

 (2) 
 

 

−∞ 𝑧→∞   𝑐𝑅 3 
 

When 𝑅 → ∞, |𝑧| → ∞ 

 

∴ ∫𝑐𝑅 
𝑓(𝑧)𝑑𝑧 = 0   (3) 

 

From (2) and (3), we have 
 

∞ 𝜋 
∫ 𝑓(𝑥)𝑑𝑥 = 

−∞ 3 
 

i.e., 
∞ 𝑥2 

𝑑𝑥 = 
𝜋

 

∫
−∞ (𝑥2+1)(𝑥2+4) 3 

 

Assignment Questions 
 

1. Prove that 
2𝜋 𝑠𝑖𝑛2𝜃 𝑑𝜃 

= 
2𝜋 

[𝑎 − √𝑎2 − 𝑏2] where a > b > 0 

0 𝑎+𝑏 𝑐𝑜𝑠𝜃 𝑏2 

 
 

∫ 
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2. Show that 
2𝜋 

∫0 
𝑑𝜃 

 
 

𝑎+𝑏 𝑐𝑜𝑠𝜃 
= 

2𝜋 

√𝑎2−𝑏2 

, a>b>0 using Residue theorem. 

 
 

3. Evaluate 
2𝜋 

∫0 
cos 2𝜃 

5+4 

𝑐𝑜𝑠𝜃 

𝑑𝜃 using Residue theorem. 
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∫
−∞ 

∞ 

𝐶 

4. Show that 
2𝜋  1+4 cos 𝜃 

 
 

0 17+8 𝑐𝑜𝑠𝜃 
𝑑𝜃 = 0 

 
 

5. Evaluate 
2𝜋 

∫0 
1 

 

 

5−3 
𝑐𝑜𝑠𝜃 

𝑑𝜃 using Residue Theorem. 

 

 

 

 

 

 

 

 

 

 

Type II: Integrals of the type 
∞ 

∫
−∞ 𝒇(𝒙)dx [Integration around semi circle] 

 

To solve the integrals of the type 
∞

 𝑓(𝑥)dx, we consider ∫−∞ 𝑓(𝑥)𝑑𝑥 = ∫𝑐    
𝑓(𝑧)dz 

 

Where ‘C’ is the closed contour. 

 
𝐶 = 𝐶𝑅𝑈 real axis from –R to R [𝐶𝑅 is the semi circle in upper half plane with radius R] 

 
If 𝑓(𝑧) has no poles on real axis &on circumference of a circle. But 𝑓(𝑧) has some poles 

Inside curve ‘C’. Then by Residue theorem 

 

∫𝑐 𝑓(𝑧)dz = 2𝜋𝑖 × [𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 Interior poles] 

 

∫𝐶𝑅 
𝑓(𝑧)𝑑𝑧 + 

𝑅 
∫

−𝑅 𝑓(𝑥)𝑑𝑥 = 2𝜋𝑖 × [𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 Interior poles] 

 

Here we show that ∫ |𝑓(𝑧)|𝑑𝑧 → 0 as 𝑅 → ∞ 
𝑅 

 

∞ 

∫ 𝑓(𝑥)𝑑𝑥 = 2𝜋𝑖 × [𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 Interior poles] 
−∞ 

 
 
 
 
 

 

Note: Radius 𝑅 is taken so large these are the singularities of 𝑓(𝑧) lie within semicircle 𝐶𝑅. 
 

∫ 
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1. Evaluate 
∞ 

∫𝟎 
𝒅𝒙 

(𝒙𝟐+𝒂𝟐)
𝟐

 

 

Sol: Here 𝑓(𝑥) = 
𝟏

 

(𝒙𝟐+𝒂𝟐)
𝟐
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∫ 

𝑓(−𝑥) =  
𝟏 

((−𝒙)𝟐+𝒂𝟐)
𝟐

 

= 
𝟏 

(𝒙𝟐+𝒂𝟐)
𝟐

 

= 𝑓(𝑥) 

∴ 𝑓(𝑥) is an even function 
∞ 𝑓(𝑥)𝑑𝑥 = 

1    ∞ 
𝑓(𝑥)𝑑𝑥 

∫
0 2 

∫
−∞ 

∞ 𝟏 
𝑑𝑥 = 

1    ∞ 
 

  

 𝟏 𝑑𝑥 
 

 

 (1) 

∫
0   (𝒙𝟐+𝒂𝟐)

𝟐 2 
∫

−∞ (𝒙𝟐+𝒂𝟐)
𝟐   

 

Now let 
∞ 𝟏 

𝑑𝑥 = ∫   𝑓(𝑧)dz where 𝑓(𝑧) = 
𝟏

 
  

−∞ (𝒙𝟐+𝒂𝟐)
𝟐 𝑐 (𝒛𝟐+𝒂𝟐)

𝟐
 

& C is the contour consisting of the semi circle 𝐶𝑅 of radius R together with the real 

axis from –R to R. 

The poles of 𝑓(𝑧) are given by (𝒛𝟐 + 𝒂𝟐)𝟐=0 

⇒ 𝑧 = ±𝑎𝑖 , ±𝑎𝑖 

The poles are 𝑧 = 𝑎𝑖 , 𝑧 = − 𝑎𝑖 of order 2 

The only pole 𝑧 = 𝑎𝑖 lies inside semi circle 𝐶𝑅 

 
Residue of 𝑓(𝑧) at 𝑧 = 𝑎𝑖 

 

Since 𝑧 = 𝑎𝑖 is a pole of order 2 
 

𝑅   = [𝑅𝑒𝑠 [𝑓(𝑧)]]= 1 𝐿𝑡 
 

[ 
𝑑 

(𝑧 − 𝑎𝑖)2. 𝑓(𝑧)] 
 

𝑖  
𝑧=𝑎𝑖 

1!  
𝑧→𝑎𝑖 𝑑𝑧 

=𝐿𝑡 [ 
𝑑 

(𝑧 − 𝑎𝑖)2. 
𝟏 

] 
  

𝑧→𝑎𝑖 𝑑𝑧 (𝒛𝟐+𝒂𝟐)
𝟐

 

= 𝐿𝑡 [ 
𝑑 

(𝑧 − 𝑎𝑖)2. 
𝟏 

] 
  

𝑧→𝑎𝑖 𝑑𝑧 (𝑧+𝑎𝑖)2(𝑧−𝑎𝑖)2 

=𝐿𝑡  𝑑 𝟏 [ . ] 
 

𝑧→𝑎𝑖 𝑑𝑧   (𝑧+𝑎𝑖)2 

=𝐿𝑡𝑧→𝑎𝑖 [ −𝟐 ] 
(𝑧+𝑎𝑖)3 

𝑅 = 1 
 

𝑖 4𝑎3𝑖 

 

Hence by Residue Theorem, ∫𝑐 𝑓(𝑧)dz = 2𝜋𝑖 × [𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 Interior poles] 

 

= 2𝜋𝑖 ×  
1 

4𝑎3𝑖 

=
 𝜋  

2𝑎3 

∫𝐶𝑅 
𝑓(𝑧)𝑑𝑧 + 

𝑅 
∫

−𝑅 𝑓(𝑥)𝑑𝑥 = 
𝜋 

 
 

2𝑎3     
(2) 
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𝐶 

 

We know that ∫ |𝑓(𝑧)|𝑑𝑧 → 0 as 𝑅 → ∞ 
𝑅 

Hence, 

Sub. (3) in (1) 

∞ 
∫

−∞ 𝑓(𝑥)𝑑𝑥 = 
𝜋 

 
 

2𝑎3         
(3) 
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0 

∞ 𝟏 𝑑𝑥 = 
1    ∞ 𝟏 

𝑑𝑥 = 
1

 
 

  

𝜋  
=  

𝜋 
 

 

∫
0 (𝒙𝟐+𝒂𝟐)

𝟐
 2 

∫
−∞ 

(𝒙𝟐+𝒂𝟐)
𝟐

 

2 2𝑎3 4𝑎3 

 

Note: Evaluate 
∞ 𝟏 

∫
0 (𝒙𝟐+𝒂𝟐)

𝟐
 

𝑑𝑥 using Residue Theorem 

 

Put a=1 in the above problems then we get 
 

∞ 𝟏 𝜋 
∫   

(𝒙𝟐 + 𝒂𝟐)𝟐 
𝑑𝑥 = 

4 
 
 
 

 
Assignment Questions: 

 

1. Using the method of contour integration prove that 
∞     𝟏 

∫
0 𝒙𝟔+𝟏 

𝑑𝑥 = 
𝜋
 
3 

(or) Evaluate 

∞     𝟏 
∫

0 𝒙𝟔+𝟏 
𝑑𝑥 using the Residue theorem. 

2. Evaluate by contour Integration   
∞

 𝒙𝟐 𝑑𝑥 

∫
−∞ (𝒙𝟐+𝟏)(𝒙𝟐+𝟒) 

3. Evaluate by contour Integration 
∞ 𝟏 

∫
0 (𝒙𝟐+𝟏) 

 

𝑑𝑥 

4. Evaluate 
∞   𝒍𝒐𝒈 𝒙 

∫
0 (𝒙𝟐+𝟏) 

 

𝑑𝑥 
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1 

2 

UNIT-V 

CONFORMAL MAPPINGS 

Introduction : In this unit we deal the special type of mappings 𝑤 = 𝑓(𝑧) , which are called 

conformal mapping. These mappings are important in engineering mathematics in solving 

various problems in two dimensional potential theory. 

Basic Defintions: 
 

Mapping or transformation from Z-plane to W-plane : 
 

The correspondence defined by the equation 𝑤 = 𝑓(𝑧) between the points in the Z-plane and 

W-plane is called “Mapping” from Z-plane to the W-plane. 

Conformal mapping : 
 

Suppose under the transformation 𝑤 = 𝑓(𝑧), the poinrt 𝑃(𝑥0, 𝑦0) of the Z-plane is mapped 

in to the point 𝑃′(𝑢0, 𝑣0) of the W-plane. Suppose 𝐶1 and 𝐶2 are any two curves intersecting 

at the point 𝑃(𝑥0, 𝑦0). Suppose the mapping 𝑤 = 𝑓(𝑧) takes 𝐶1 and   𝐶2 in to the curves 𝑐′ and 

𝑐′ which are intersecting at 𝑃′(𝑢0, 𝑣0) . If the transformation is such that the angles between 𝐶1 

and 𝐶2 at (𝑥0, 𝑦0) is equal both in magnitude and direction to the angel between 
𝑐′ and 𝑐′ at (𝑢0, 𝑣0) ,then it is said to be conformal transformation at (𝑥0, 𝑦0) . 

1 2 
 

 
 

 

Definition : A mapping w=f(z) is said to be conformal in a domain D if it is conformal at 

every point of D. 

Isogonal Transformation : 
 

If the transformation preserves the only magnitude but not necessarily sense (direction) then 

it is called isogonal mapping. 

Sufficient conditions for w=f(z) to represent a conformal mapping : 
 

Theorem : A map w=f(z) is conformal at a point 𝑧0 if f(z) is analytic at 𝑧0 and 𝑓′(𝑧0) ≠ 0. 

Critical point : the points where 𝑓′(𝑧) = 0 are called critical points. 

Ordinary point : the points where 𝑓′(𝑧) ≠ 0 are called ordinary points. 

Ex: Find the critical points of 𝑓(𝑧) = 𝑧2 
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Sol: 𝑓′(𝑧) = 0 
 

⇒ 2𝑧 = 0 
 

⇒ 𝑧 = 0 
 

∴ 𝑧 = 0 is called critical points. 
 

Ex 2: Find the critical points of 𝑓(𝑧) = 𝑐𝑜𝑠𝑧 
 

𝑓′(𝑧) = 𝑠𝑖𝑛𝑧 

𝑓′(𝑧) = 0 
 

𝑠𝑖𝑛𝑧 = 0 
 

𝑧 = 𝑛𝜋 where 𝑛 = 0, ±1, ±2 − − − − 
 

𝑧 = 𝑛𝜋 are called critical points of 𝑐𝑜𝑠𝑧 

Examples for conformal mappings 

1.𝒘 = 𝒇(𝒛) = 𝒆𝒛 

We know that 𝑓(𝑧) = 𝑒𝑧 is analytic everywhere and 𝑓′(𝑧) = 𝑒𝑧 ≠ 0 ∀𝑧 
 

∴ 𝑓(𝑧) is conformal at every point 
 

2.𝒘 = 𝒇(𝒛) = 𝒛𝟐 − 𝒛 + 𝟏 is conformal mapping because it is a polynomial. 
 

3.𝒘 = 𝒇(𝒛) = 𝒆𝟐𝒛 − 𝟐𝒊𝒛 + 𝟑 is conformal mapping. 
 

Standard Transformations : 
 

1. Translation 

2. Expansion or Contraction 

3. Inversion 
 

1. Translation : the mapping 𝑤 = 𝑧 + 𝑐 where 𝑐 is any complex constant, is called a translation. 

Note : Circles are mapped onto circles under this transformation. 
 

2. Expansion (or) contraction and rotation(Magnification) : The mapping 𝑤 = 𝑐𝑧 is called 

contraction and rotation (or ) expansion. Under this transformation, any figure in Z-plane is 

transformed into, geometrically, a similar figure in the W-plane. 

Note : if |𝑐| = 1 then 𝑤 = 𝑐𝑧 is called a pure rotation, since in this case there is no expansion 

or contraction, but just a rotation through an angle of 𝛼. 

 

 
Example 
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′ 1 2 

Prove that circles are invariant under the linear transformation 𝑤 = 𝑎𝑧 + 𝑐 (or) prove that 

circles are mapped to circles under 𝑤 = 𝑎𝑧 + 𝑐. 

Sol: Given the linear transformation = 𝑎𝑧 + 𝑐 , where 𝑎 & 𝑐 are complex constants. 

Consider the circle in Z-plane is 𝐴(𝑥2 + 𝑦2) + 𝐵𝑥 + 𝐶𝑦 + 𝐷 = 0 -------- (1) 

We have transformation 𝑤 = 𝑎𝑧 + 𝑐 
 

⇒ 𝑢 + 𝑖𝑣 = 𝑎(𝑥 + 𝑖𝑦) + 𝑐1 + 𝑖𝑐2 
 

Comparing real and imaginary parts 
 

⇒ 𝑢 = 𝑎𝑥 + 𝑐1 , 𝑣 = 𝑎𝑦 + 𝑐2 
 

⇒ 𝑥 = 
𝑢−𝑐1 

, 𝑦 = 
𝑣−𝑐2 -------------------- (2) 

𝑎 𝑎 
 

Substitute (2) in (1) then we get 
 

⇒ 𝐴 [(
𝑢−𝑐1) 

𝑎 
+ (

𝑣−𝑐2 

𝑎 

2 

) ] + 𝐵 ( 
𝑢−𝑐1 

𝑎 

 

) + 𝐶 ( 
𝑣−𝑐2 

𝑎 

 

) + 𝐷 = 0 

 

⇒ 𝐴′(𝑢2 + 𝑣2) + 𝐵′𝑢 + 𝐶′𝑣 + 𝐷′ = 0 
 

Which is a circle in the W-plane. 
 

Where 𝐴′ = 
𝐴
 , 𝐵′ = 

𝐵−2𝐴𝑐1 
, 𝐶′ = 

𝐶−2𝐴𝑐2 
,
 

𝑎2 

 

𝑐 
2 + 𝑐2 

𝐷 = 𝐷 + 𝐴 ( ) − 
𝑎2 

𝑎 
 

𝐵𝑐1 
 

 

𝑎 

𝑎 
 

𝑐𝑐2 
− 

𝑎
 

 

Therefore, circles are mapped on to the circles under the transformation 𝑤 = 𝑎𝑧 + 𝑐. 

3. Inversion : The mapping 𝑤 = 
1 

is called inversion mapping. 
𝑧 

 

Example : the transformation 𝑤 = 
1

 
𝑧 

maps every straight line or circle onto a circle or 

straight line. 
 

Proof : let 𝐴(𝑥2 + 𝑦2) + 𝐵𝑥 + 𝐶𝑦 + 𝐷 = 0 -----------(1) is a circle (or) straight line (if A=0) 

in Z-plane. 

Here A,B,C,D are real numbers. 
 

If A=0, & B & C≠ 0 (at least one) then equation (1) represents straight line. 

If 𝐴 ≠ 0 then equation (1) represents straight line. 

We have 𝑧 = 𝑥 + 𝑖𝑦 and �̅� = 𝑥 − 𝑖𝑦 
 

𝑧. �̅� = 𝑥2 + 𝑦2 

2 
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𝑥 = 
𝑧+�̅�

, 𝑦 = 
𝑧−�̅� 

--------------------(2) 
2 2𝑖 
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Substitute (2) in (1) then 
 

 

𝐴𝑧𝑧̅ + 𝐵 ( 
𝑧 + �̅� 

2   
) + 𝐶 ( 

𝑧 − �̅� 

2𝑖 
) + 𝐷 = 0 

 

Substitute 𝑤 = 
1

 
𝑧 

⇒ 𝑧 = 
1

 
𝑤 

 

1 
1 

+ 
1 1 

− 
1 

⇒ 𝐴 + 𝐵 (𝑤 �̅�) + 𝐶 (𝑤 �̅�) + 𝐷 = 0 

𝑤�̅� 2 2𝑖 

 

Now multiply the above equation by 𝑤�̅� 
 

 

⇒ 𝐴 + 𝐵 ( 
𝑤 + �̅� 

2 
) + 𝐶 ( 

𝑤 − �̅� 

2𝑖 
) + 𝐷𝑤�̅�  = 0 

 

⇒ 𝐴 + 𝐵𝑢 − 𝐶𝑣 + 𝐷(𝑢2 + 𝑣2) = 0--------(3) 

Where = 
𝑤+�̅�  

, 𝑣 = 
𝑤−�̅�  

, 𝑢2 + 𝑣2  = 𝑤�̅� 
2 2𝑖 

 

Equation (3) represents a circle in W-plane if 𝐷 ≠ 0 
 

Equation (3) represents a straight line in W-plane if 𝐷 = 0 and 𝐵 & 𝐶 ≠ 0 (at least one ) 

Therefore general equation of circle or straight is transformed to general equation of straight 

line or circle under the transformation 𝑤 = 
1
. 

𝑧 
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Some special conformal Transformations : 

1. 𝑤 = 𝑧2 2. 𝑤 = 𝑒 𝑧 3. 𝑤 = 𝑙𝑜𝑔𝑧 
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Problems : 

1. Find the points at which 𝒘 = 𝒄𝒐𝒔𝒉𝒛 is not conformal. 

Sol : given 𝑤 = 𝑓(𝑧) = 𝑐𝑜𝑠ℎ𝑧 

𝑓′(𝑧) = 𝑠𝑖𝑛ℎ𝑧 

𝑓′(𝑧) = 0 
 

𝑠𝑖𝑛ℎ𝑧 = 0 
 
𝑒𝑧 − 𝑒−𝑧 

2 
= 0 

⇒ 𝑒2𝑧 − 1 = 0 
 

⇒ 𝑧 = ±𝑛𝜋𝑖 where 𝑛 = 0, ±1, ±2 − − − − − 

Therefore critical points of 𝑓(𝑧) are 𝑧 = ±𝑛𝜋𝑖, 𝑛 = 0, ±1, ±2 − − − − − 

Therefore 𝑓(𝑧) is not conformal at 𝑧 = ±𝑛𝜋𝑖. 
 

2. Find the image of |𝒛| = 𝟐 under the transformation 𝒘 = 𝟑𝒛. 

Sol: given |𝑧| = 2 

⇒ |𝑥 + 𝑖𝑦| = 2 
 

⇒ √𝑥2 + 𝑦2 = 2 

𝑥2 + 𝑦2 = 4 which is a circle with center (0,0) & r=2. 
 

It is required to find the image of circle |𝑧| = 2 i.e 𝑥2 + 𝑦2 = 4 ------ (1) 
 

under the mapping 𝑤 = 3𝑧. 
 

Let 𝑤 = 𝑢 + 𝑖𝑣 and 𝑧 = 𝑥 + 𝑖𝑦 
 

Given transformation is 𝑤 = 3𝑧 
 

𝑢 + 𝑖𝑣 = 3(𝑥 + 𝑖𝑦) 
 

Comparing real and imaginary parts then 
 

𝑢 = 3𝑥 &𝑣 = 3𝑦 

𝑥 = 
𝑢 

and 𝑦 = 
𝑣

 
3 3 

 

Substitute 𝑥 & 𝑦 values in (1) then 
 

𝑢 2 

(
3

) 
𝑣 2 

+ (
3

)  = 4 

 

𝑢2 + 𝑣2 = 36 
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Which is a circle in the W-plane with center at (0,0) & r=6. 
 

3. under the transformation 𝒘 = 
𝟏 

,find the image of the circle |𝒛 − 𝟐𝒊| = 𝟐. 
𝒛 

 

Sol : 𝑤 = 
1

 
𝑧 

 

𝑧 = 
1

 
𝑤 

 

𝑥 + 𝑖𝑦 = 
1

 
𝑢+𝑖𝑣 

 
 
 

= 
𝑢−𝑖𝑣 

𝑢2+𝑣2 

𝑥 = 
𝑢

 
𝑢2+𝑣2 

𝑦 = 
−𝑣 

𝑢2+𝑣2 

 

-----------(1) 

 

|𝑧 − 2𝑖| = 2. 
 

|𝑥 + 𝑖𝑦 − 2𝑖| = 2. 
 

𝑥2 + (𝑦 − 2)2 = 4--------------(2) 
 

Which is a circle with center (0,2) and 𝑟 = 2. 

Substitute (1) in (2) 

⇒ 1 + 4𝑣 = 0 
 

−1 
⇒ 𝑣 = 

4
 

 

Which is a straight line parallel to X-axis in the W-plane. 

 

 

4. Find the image of the infinite strip 𝟎 < 𝑦 < 
𝟏 

under the transformation 𝒘 = 
𝟏
. 

𝟐 
 

Sol: here it is required to find the image of infinite strip 𝟎 < 𝑦 < 
𝟏

 
𝟐 

𝒛 

 
in Z-plane under the map 

𝑤 = 
1
. 

𝑧 
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Given transformation 𝑤 = 
1

 
𝑧 



154  

𝟏 
𝒛 = 

𝒘
 

 

𝑥 + 𝑖𝑦 = 
1

 
𝑢+𝑖𝑣 

=  
𝑢−𝑖𝑣 

𝑢2+𝑣2 

 

Comparing real and imaginary parts 
 

𝑥 = 
𝑢

 
𝑢2+𝑣2 

𝑦 = 
−𝑣 

𝑢2+𝑣2 
----------------------(1) 

 

Given strip in Z-plane is 𝟎 < 𝑦 < 
𝟏

 
𝟐 

 

If 𝑦 = 0 then 𝑣 = 0 (from (1)) 
 

If 𝑦 = 
1

 
2 

then 𝑢2 + 𝑣2 + 2𝑣 = 0 

 
𝑢2 + (𝑣 + 1)2 = 1 

 

Which is a circle with center (0,-1) & r=1 

Therefore under the transformation 𝑤 = 
1

 
𝑧 

 

The straight 𝑦 = 0 is transformed to line 𝑣 = 0 and 

The straight 𝑦 = 
1 

is transformed to a circle 𝑢2 + (𝑣 + 1)2 = 1 
2 

 

Hence the infinite strip 𝟎 < 𝑦 < 
𝟏

 
𝟐 

in Z-plane is mapped in to the region between line V=0 

and the circle 𝑢2 + (𝑣 + 1)2 = 1 in W-plane under the transformation 𝑤 = 
1
. 

𝑧 

 
 
 

 

5. show that the image of the hyperbola 𝒙𝟐 − 𝒚𝟐 = 𝟏 under the transformation 𝒘 = 
𝟏 

is 
𝒛 

the lemniscate 𝝆𝟐 = 𝒄𝒐𝒔𝟐∅. 
 

Sol: It is required to find the image of hyperbola 𝒙𝟐 − 𝒚𝟐 = 𝟏 under the transformation 𝒘 = 
𝟏 

𝒛 
 

given transformation 𝒘 = 
𝟏

 
𝒛 
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let 𝑧 = 𝑟𝑒𝑖𝜃 
 

𝑤 = 𝑅𝑒𝑖∅ 

𝑅𝑒𝑖∅ = 
1

 
𝑟𝑒𝑖𝜃 

𝑅𝑒𝑖∅ = 
1 

𝑒−𝑖𝜃 

𝑟 

𝑅 = 
1 

,∅ = −𝜃 
𝑟 

 

Given hyperbola is 𝒙𝟐 − 𝒚𝟐 = 𝟏 
 

𝑟2𝑐𝑜𝑠2𝜃 − 𝑟2𝑠𝑖𝑛2𝜃 = 1 

𝑟2(𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃) = 1 
 

𝑟2𝑐𝑜𝑠2𝜃 = 1 

1 cos(−2∅) = 1 ( 𝜌 = 
1 

,∅ = −𝜃) 
𝜌2 𝑟 

 

𝜌2 = 𝑐𝑜𝑠2∅ 
 

Therefore hyperbola 𝒙𝟐 − 𝒚𝟐 = 𝟏 in the Z-plane is mapped in to lemniscates 

𝜌2 = 𝑐𝑜𝑠2∅ in the W-plane. 
 

6. Find and plot the image of the traingularregion with vertices at (0,0) (1,0)(0,1) under 

the transformation 𝒘 = (𝟏 − 𝒊)𝒛 + 𝟑. 

Sol: Given transformation is 𝒘 = (𝟏 − 𝒊)𝒛 + 𝟑 
 

𝑢 + 𝑖𝑣 = (1 − 𝑖)(𝑥 + 𝑖𝑦) + 3 
 

𝑢 + 𝑖𝑣 = (𝑥 + 𝑦 + 3) + 𝑖(𝑦 − 𝑥) 
 

𝑢 = 𝑥 + 𝑦 + 3 and 𝑣 = 𝑦 − 𝑥 ---------------------- (1) 

When (𝑥, 𝑦) = (0,0) then (𝑢, 𝑣) = (3,0) in W-plane 

When (𝑥, 𝑦) = (1,0) then (𝑢, 𝑣) = (4, −1) in W-plane 

When (𝑥, 𝑦) = (0,1) then (𝑢, 𝑣) = (4,1) in W-plane 
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7. Find and plot the rectangular region 𝟎 ≤ 𝒙 ≤ 𝟐, 𝟎 ≤ 𝒚 ≤ 𝟐 under transformation 𝒘 = 
𝒊𝝅 

√𝟐𝒆 𝟒 𝒛 + (𝟏 − 𝟐𝒊). 
 

𝑖𝜋 
 

 

Sol: Given transformation is 𝑤 = √2𝑒 4 𝑧 + (1 − 2𝑖) 

𝜋 𝜋 
 

𝑢 + 𝑖𝑣 = √2 (𝑐𝑜𝑠 
4 

+ 𝑖𝑠𝑖𝑛 
4

) (𝑥 + 𝑖𝑦) + (1 − 2𝑖) 

1 
= √2 ( 

√2 

 
+ 𝑖 

1 
) (𝑥 + 𝑖𝑦) + (1 − 2𝑖) 

√2 

 

= (1 + 𝑖)(𝑥 + 𝑖𝑦) + (1 − 2𝑖) 
 

= (𝑥 − 𝑦) + 𝑖(𝑥 + 𝑦) + (1 − 2𝑖) 
 

𝑢 + 𝑖𝑣 = (𝑥 − 𝑦 + 1) + 𝑖(𝑥 + 𝑦 − 2) 
 

𝑢 = 𝑥 − 𝑦 + 1 and 𝑣 = 𝑥 + 𝑦 − 2 ---------- (1) which is a given transformation 
 

Under this transformation we have to find the image of rectangular region 0 ≤ 𝑥 ≤ 2, 0 ≤ 

𝑦 ≤ 2 in Z-plane. 
 

Put 𝑥 = 0 in (1) then 𝑢 = −𝑦 + 1 , 𝑣 = 𝑦 − 2 ⇒ 𝑦 = 2 + 𝑣 
 

𝑢 = −(2 + 𝑣) + 1 ⇒ 𝑣 = −𝑢 − 1 
 

Put 𝑥 = 2 in (1) then 𝑢 = 2 − 𝑦 , 𝑣 = 𝑦 − 1 ⇒ 𝑣 = 1 − 𝑢 Put 

𝑦 = 0 in (1) then 𝑢 = 𝑥 + 1 , 𝑣 = 𝑥 − 2 ⇒ 𝑣 = 𝑢 − 3 Put 𝑦 

= 2 in (1) then 𝑢 = 𝑥 − 1 , 𝑣 = 𝑥 ⇒ 𝑣 = 𝑢 + 1 

Thus the region is a rectangle bounded by the lines , 𝑣 = −𝑢 − 1 ⇒ 𝑣 = 1 − 𝑢, 𝑣 = 𝑢 − 3 & 
 

𝑣 = 𝑢 + 1 
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8. Find the image of the region in the Z-plane between the lines 𝒚 = 𝟎 & 𝑦 = 𝜋/2 under 

the transformation 𝒘 = 𝒆𝒛. 

Sol: Given transformation is 𝒘 = 𝒆𝒛 
 

Let 𝑧 = 𝑥 + 𝑖𝑦 and 𝑤 = 𝑅𝑒𝑖∅ 
 

𝑅𝑒𝑖∅ = 𝑒𝑥+𝑖𝑦 

 

𝑅𝑒𝑖∅ = 𝑒𝑥. 𝑒𝑖𝑦 
 

𝑅 = 𝑒𝑥 and ∅ = 𝑦 ----- (1) which is a given transformation 
 

If 𝑦 = 0 then ∅ = 0 (fom (1)) represents radial line making an angle of zero radius with the 

x-axis . 

If 𝑦 = 𝜋/2 then ∅ = 𝜋/2 represents radial line making angle of 𝜋/2 radius with the X-axis. 

As 𝑥 increases from −∞ to ∞ then 𝑅 = 𝑒𝑥 (i.e radius) increases from 0 to ∞ 

𝑦 = 𝜋/2 in Z-plane is mapped onto the ray ∅ = 𝜋/2 excluding origin in W-plane. 
 

Hence the infinite strip bounded by the lines 𝑦 = 0 and 𝑦 = 𝜋/2 is mapped on to the upper 

quadrant of W-plane. 
 

 

 

 

 

 

 

 

Assignment questions : 
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1. For the mapping 𝑤 = 
1 

,Find the image of the family of circles 𝑥2 + 𝑦2 = 𝑎𝑥 where 𝑎 is 
𝑧 

real. 

2. Show that the transformation 𝑤 = 
1
 

𝑧 

 
 
maps a circle to a circle or to a straight line if the 

former goes through the origin. 
 

3. Find the image of the domain in the Z-plane to the left of the line 𝑥 = −3 under 

transformation 𝑤 = 𝑧2. 

4. Find and plot the image of the regions 
 

i) 𝑥 > 1 ii) 𝑦 > 0 iii)0 < 𝑦 < 1/2 under transformation 𝑤 = 1/𝑧. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
BILINEAR TRANSFORMATION OR MOBIUS TRANSFORMATION 
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Bilinear transformation : The map 𝑤 = 𝑇(𝑧) = 
𝑎𝑧+𝑏 

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ and 𝑎𝑑 − 𝑏𝑐 ≠ 0 
𝑐𝑧+𝑑 

is called bilinear transformation (or) linear fractional transformation or mobius 

transformation. 

Note :The map 𝑤 = 
𝑎𝑧+𝑏 

-----(1)  where 𝑎𝑑 − 𝑏𝑐 ≠ 0 is bilinear transformation 
𝑐𝑧+𝑑 

 

⇒ 𝑤𝑐𝑧 + 𝑤𝑑 = 𝑎𝑧 + 𝑏 
 

⇒ 𝑤𝑐𝑧 − 𝑎𝑧 + 𝑑𝑤 − 𝑏 = 0 
 

⇒ 𝐴𝑧𝑤 + 𝐵𝑧 + 𝐶𝑤 + 𝐷 = 0 -----(2) 

Where 𝐴 = 𝑐, 𝐵 = −𝑎, 𝐶 = 𝑑, 𝐷 = −𝑏 

Note that 𝐴𝐷 − 𝐵𝐶 = 𝑐(−𝑏) − (−𝑎)𝑑 = 𝑎𝑑 − 𝑏𝑐 ≠ 0 
 

Equation (1) can be written in the form 𝐴𝑧𝑤 + 𝐵𝑧 + 𝐶𝑤 + 𝐷 = 0 and 𝐴𝐷 − 𝐵𝐶 ≠ 0 
 

Therefore the form 𝐴𝑧𝑤 + 𝐵𝑧 + 𝐶𝑤 + 𝐷 = 0 is also called bilinear transformation 
 

i.e equations (1) and (2) represents bilinear transformation. 
 

 The necessary condition to say that 𝑤 = 
𝑎𝑧+𝑏

 
𝑐𝑧+𝑑 

---(1) is bilinear transformation is 𝑎𝑑 − 

𝑏𝑐 ≠ 0 
 The bilinear transformation 𝑤 = 

𝑎𝑧+𝑏 
, 𝑎𝑑 − 𝑏𝑐 ≠ 0 is a bijective from 𝐶 to 𝐶 . 

 

𝑐𝑧+𝑑 ∞ ∞ 

 The inverse of a bilinear is also bilinear. 

 The composition of any two bilinear transformation is also bilinear. 

 The identity transformation 𝐼(𝑧) = 𝑧 is also bilinear 
 

Properties of Bilinear Transformation 
 

1.A Bilinear transformation is conformal 

Proof:Consider the bilinear transformation 𝑤 = 𝑇(𝑧) = 
𝑎𝑧+𝑏

 
𝑐𝑧+𝑑 

 

Differentiate with respect to 𝑧 
 

𝑑𝑤 
= 𝑇′(𝑧) = 

(𝑐𝑧 + 𝑑)(𝑎) − (𝑎𝑧 + 𝑏)𝑐 
= 

𝑎𝑑 − 𝑏𝑐 

 

Since 𝑎𝑑 − 𝑏𝑐 ≠ 0 

⇒ 
𝑑𝑤 

≠ 0 
𝑑𝑧 

𝑑𝑧 (𝑐𝑧 + 𝑑)2 (𝑐𝑧 + 𝑑)2 

 
 

⇒ 𝑤 = 𝑇(𝑧) = 
𝑎𝑧+𝑏 

is conformal transformation. 
𝑐𝑧+𝑑 

 
If 𝑎𝑑 − 𝑏𝑐 = 0 then 𝑑𝑤 = 0 ∀ 𝑧 

𝑑𝑧 
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Then we say that every point of 𝑧 −plane is critical. 

Note : Let the bilinear transformation 𝑤 = 
𝑎𝑧+𝑏

 
𝑐𝑧+𝑑 

 

For different choices of constants a,b,c,d we get different bilinear transformation as 
 

(i) 𝑤 = 𝑧 + 𝑏 (if 𝑎 = 1, 𝑐 = 0, 𝑑 = 1) (translation) 

(ii) 𝑤 = 𝑎𝑧 + 𝑏(if 𝑐 = 0 &𝑑 = 1) (Linear translation) 

(iii) 𝑤 = 𝑎𝑧 (if 𝑏 = 0, 𝑐 = 0, 𝑑 = 1) (Rotation) 

(iv) 𝑤 = 
1

 
𝑧 

(if 𝑎 = 0, 𝑏 = 1, 𝑐 = 1, 𝑑 = 0) (Inversion) 

 

2.There is a one-one correspondence between all points in two planes. 

Proof: Let 𝑤 = 
𝑎𝑧+𝑏 ---------- 

(1) 𝑎𝑑 − 𝑏𝑐 ≠ 0 be a conformal mapping 
𝑐𝑧+𝑑 

 

From (1) 𝑧 = 
−𝑑𝑤+𝑏

 
𝑐𝑤−𝑎 

--------(2) is inverse mapping 

 

Since 𝑎𝑑 − 𝑏𝑐 ≠ 0 therefore equation (2) is also represents a bilinear transformation. 

From (1) , it is clear that to each point in the Z-plane except 𝑧 = 
−𝑑 

there corresponds a 
𝑐 

unique point in the W-plane. 
 

Invariant or Fixed point : A point 𝑧0 is said to be a fixed point of a bilinear transformation 

𝑤 = 𝑇(𝑧) if 𝑇(𝑧0) = 𝑧0. 

Ex 1: For the map 𝑊 = 𝑇(𝑧) = 𝑧 
 

Every point is a fixed point 

Ex2: For the map 𝑊 = 
1

 
𝑧 

 

the fixed point are obtained by 𝑇(𝑧) = 𝑧 
 

1 
⇒ 

𝑧 
= 𝑧 

⇒ 𝑧2 − 1 = 0 
 

⇒ 𝑧 = ±1 ,therefore 𝑧 = ±1 are fixed points 
 

 Finding the Bilnear Transformation whose fixed point are 𝑎 and 𝖰 are given by 𝒘 = 
𝒛−𝑎𝖰 

𝒛−(𝑎+𝖰)+ 

 
 
 
 
 

Prop 3. Every bilinear transformation maps the totality of circles and straight lines in 

Z-plane onto the totality of circles and straight lines the W-plane. 
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OR 
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Every bilinear transformation maps circles and straight lines into circles and straight 

lines 

Proof: Let the bilinear transformation 𝑤 = 𝑇(𝑧) = 
𝑎𝑧+𝑏 

where 𝑎𝑑 − 𝑏𝑐 ≠ 0 
𝑐𝑧+𝑑 

 

(i). If 𝑐 = 0 then 𝑇(𝑧) = (
𝑎
) 𝑧 + (

𝑏
) = 𝐴𝑧 + 𝐵 where = 

𝑎 
,𝐵 = 

𝑏
 

 
Clearly T is linear. 

𝑑 𝑑 𝑑 𝑑 

 

We know that image of any region in the Z-plane under the linear transformation has the 

same. 

i.e the transformation 𝑤 = 𝑇(𝑧) transforms circles & straight lines in to circles and straight 

lines. 

(ii). If 𝑐 ≠ 0 then 
 

𝑇(𝑧) = (
𝑎
) + (

𝑏𝑐−𝑎𝑑
) . 

1
 

   

𝑐 𝑐2 𝑧+
𝑑

 
𝑐 

 

Let 𝑇 (𝑧) = 𝑧 + 
𝑑 

, 𝑇 (𝑧) = 
1 

, 𝑇 (𝑧) = 
𝑏𝑐−𝑎𝑑 

. 𝑧 , 𝑇 (𝑧) = 
𝑎 

+ 𝑧 
    

1 𝑐 2 𝑧 3 𝑐2 4 𝑐 

 

Therefore 𝑇(𝑧) = 𝑇4𝑜𝑇3𝑜𝑇2𝑜𝑇1 

We know that (i) the inversion transformation maps circles and straight lines in to circles 

and straight lines. 

(i)The translation and rotation are linear transforms. 
 

Therefore the transformation transforms circles and straight lines into circles and straight 

lines. 

Since every bilinear transformation is a composition of translation,rotation and inversion. 

Hence bilinear transformation 𝑇(𝑧) is a of translation,rotation and inversion. 

Therefore bilinear transformation 𝑇(𝑧), circles and straight lines into circles and straight 

lines. 

 

 

 

 

 
 

Cross Ratio : 
 

For three distinct points 𝑧1, 𝑧2, 𝑧3 in 𝐶∞ then the cross ratio of 𝑧, 𝑧1, 𝑧2, 𝑧3 is denoted 

by 
 

(𝑧, 𝑧 , 𝑧 , 𝑧 ) and defined by (𝑧, 𝑧 , 𝑧 , 𝑧 ) = 
(𝑧−𝑧1)(𝑧2−𝑧3) 
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1 2 3 1 2 3 (𝑧1−𝑧2)(𝑧3−𝑧) 
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Prop4: The cross ratio is invariant under a bilinear transformation 
 

(or) 
 

A bilinear transformation preserves cross ratio property of four points. 
 

Proof : Let the bilinear transformation 𝑤 = 𝑇(𝑧) = 
𝑎𝑧+𝑏

 
𝑐𝑧+𝑑 

where 𝑎𝑑 − 𝑏𝑐 ≠ 0 where 

𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ 
 

Let 𝑇(𝑧𝑘) = 𝑤𝑘 for 𝑘 = 1,2,3 

It is required to prove that (𝑧, 𝑧1, 𝑧2,𝑧3) = (𝑇(𝑧), 𝑇(𝑧1), 𝑇(𝑧2), 𝑇(𝑧3)) 
 
i.e (𝑤, 𝑤1, 𝑤2,𝑤3) = (𝑧, 𝑧1, 𝑧2,𝑧3) 

now 𝑤 − 𝑤𝑘 = 𝑇(𝑧) − 𝑇(𝑧𝑘) where 𝑘 = 1,2,3 

= 
𝑎𝑧+𝑏 

− 
𝑎𝑧𝑘+𝑏 

𝑐𝑧+𝑑 𝑐𝑧𝑘+𝑑 
 

 
 
 

𝑤 − 𝑤𝑘 

=    
(𝑎𝑧+𝑏)(𝑐𝑧𝑘+𝑑)−(𝑎𝑧𝑘+𝑏)(𝑐𝑧+𝑑) 

(𝑐𝑧+𝑑)(𝑐𝑧𝑘+𝑑) 

 

= 
(𝑎𝑑−𝑏𝑐)(𝑧−𝑧𝑘) 

(𝑐𝑧+𝑑)(𝑐𝑧𝑘+𝑑) 

 

𝑤𝑖 − 𝑤𝑗 = 
(𝑎𝑑−𝑏𝑐)(𝑧𝑖−𝑧𝑗) 

(𝑐𝑧𝑖+𝑑)(𝑐𝑧𝑗+𝑑) 

 

Let the cross ratio of 𝑤, 𝑤1, 𝑤2,𝑤3 

(𝑤 − 𝑤1)(𝑤2 − 𝑤3) 
(𝑤, 𝑤1, 𝑤2,𝑤3) = 

(𝑤
 

− 𝑤2 )(𝑤3 − 𝑤) 

 

(𝑎𝑑 − 𝑏𝑐)(𝑧 − 𝑧1) 
. 
(𝑎𝑑 − 𝑏𝑐)(𝑧2 − 𝑧3) 

  

= 
(𝑐𝑧 + 𝑑)(𝑐𝑧1 + 𝑑) (𝑐𝑧2 + 𝑑)(𝑐𝑧3 + 𝑑) 

(𝑎𝑑 − 𝑏𝑐)(𝑧1 − 𝑧2) 
. 
(𝑎𝑑 − 𝑏𝑐)(𝑧3 − 𝑧1) 

  

(𝑐𝑧1 + 𝑑)(𝑐𝑧2 + 𝑑) 

= 
(𝑧−𝑧1)(𝑧2−𝑧3) 

(𝑧1−𝑧1)(𝑧3−𝑧) 

 

= (𝑧, 𝑧1, 𝑧2,𝑧3) 

(𝑐𝑧3 + 𝑑)(𝑐𝑧 + 𝑑) 

 

Therefore (𝑧, 𝑧1, 𝑧2,𝑧3) = (𝑇(𝑧), 𝑇(𝑧1), 𝑇(𝑧2), 𝑇(𝑧3)) 

 

 
Note1: To find the bilinear transformation = 𝑇(𝑧) , we can use the condition 

 
(𝑤−𝑤1)(𝑤2−𝑤3)   

= 
(𝑧−𝑧1)(𝑧2−𝑧3) 

(𝑤1−𝑤2)(𝑤3−𝑤) (𝑧1−𝑧2)(𝑧3−𝑧) 
 

1 
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Note 2: To find the bilinear transformation we can also use the formula 𝑤 = 
𝑎𝑧+𝑏

 
𝑐𝑧+𝑑 
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Note 3: ∞−𝑖 
∞−𝑤 

= log 𝑛−𝑖 
𝑛→∞ 𝑛−𝑤 

= 1 ,similarly ∞−𝑤 = 1 
∞−𝑖 

 

Note 4: 𝑖−∞ 
∞−𝑤 

 

Problems: 

= −1 , ∞−𝑖 
𝑤−∞ 

= −1 

 

1: Find the Bilinear transformation which maps the point (-1,0,1) in to the points (0,i,3i) 

Soln: let 𝑧1 = −1, 𝑧2 = 0, 𝑧3 = 1 

𝑤1 = −1, 𝑤2 = 0, 𝑤3 = 1 
 

we know that 
(𝑤−𝑤1)(𝑤2−𝑤3) 

= 
(𝑧−𝑧1)(𝑧2−𝑧3) 

(𝑤1−𝑤2)(𝑤3−𝑤) 

 
( 𝑤−0 )(𝑖−3𝑖 ) 

(0− 𝑖 )(3𝑖−𝑤) 

 
(  𝑤 )(𝑖−3𝑖  ) 

 

 

(− 𝑖 )(3𝑖−𝑤) 

 
( 2 𝑤 ) 

(3𝑖−𝑤) 

(𝑧1−𝑧2)(𝑧3−𝑧) 

 

= 
(𝑧+1)( 0 − 1 ) 

(−1−0)(1− 𝑍 ) 

 

= 
(𝑧+1) 

(1− 𝑍 ) 

 

= 
(𝑧+1) 

(1− 𝑍 ) 

( 2 w )(1 − Z) =  (z + 1)(3i − w) 
 

2 w − 2 w Z = 3i z − w z + 3i − w 

w[2 − 2z + z + 1] = 3i[z + 1] 

w(−z + 3) = 3i[z + 1] 
 

w = 
3i[z+1] 

3−z 

 

w = T(z) = 
3i[z+1] 

3−z 
 

Which is the required bilinear transformation 
 

2. Find the fixed points (Invariant points) of the transformation 
 

(i) 𝒘 = 
𝟐𝒊−𝟔𝒛 

𝒊𝒛−𝟑 
 

(ii) 𝒘 = 
𝒛−𝟏

 
𝒛+𝟏 

 

Soln : The fixed point of transformations are obtained by 𝑤 = 𝑧 
 

𝑖. 𝑒 𝑓(𝑧) = 𝑧 
 

(i)   𝑤 = 𝑓(𝑧) = 
2𝑖−6𝑧

 
𝑖𝑧−3 

 

𝑓 (𝑧) = 𝑧 
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2i−6z 

iz−3 

= 𝑧 



168  

2𝑖 − 6𝑧 = 𝑖𝑧2 − 3𝑧 
 

𝑖𝑧2 + 3𝑧 − 2𝑖 = 0 
 

𝑧2 − 3𝑖𝑧 − 2 = 0 
 

It is a quadratic equation 
 

𝑍 = 
3i± √9i2−4.1.(−z) 

2 
 

𝑍 = 𝑖, 2𝑖 
 

Fixed points are 𝑖, 2𝑖 
 

3. find the bilinear transformations which maps 𝒁 = 𝟎, −𝒊, 𝟐𝒊 in to 
 

𝒘 = 𝟓𝒊, ∞, −𝒊/𝟑. 
 

soln: let the bilinear transformation be 𝑤 = 
az+b

 
cz+d 

-----(1) 

 

Given   𝑍 = 0, −𝑖, 2𝑖   & 𝑤 = 5𝑖, ∞, −𝑖/3 
 

sub above values in (1) 
 

 
5i = b 

d 
; b = 5id ------- (2) 

 

∞ = 
−ai+b   

; 
1 

= 
−ai+b ;−ci + d = 0 ------ (3) 

−ci+d 0 −ci+d 
 

−i   = 2ai+b ; 2c − id = 6𝑖𝑎 + 3𝑏 -------- (4) 
3 2ci+d 

 

Solving (2) (3) & (4) for 𝑎 , 𝑏 , 𝑐 , 𝑑 
 

From (2) 𝑏 = 5𝑖𝑑 

From (3) 𝑐 =   −𝑖𝑑 

Sub 𝑏 , 𝑐 values in (4) 

2(−𝑖𝑑) – 𝑖𝑑 = 6𝑖𝑎 + 15 𝑖𝑑 
 

𝑎 =   −3𝑑 
 

Sub 𝑎, 𝑏, 𝑐 in (1) 
 

 

𝑤 = 
−3𝑑𝑧 + 5𝑖𝑑 

 
 

−𝑖𝑑𝑧 + 𝑑 
 

𝑤 = 
−3𝑧+5𝑖 

−𝑖𝑧+1 
 

Multiply & divide by 𝑖 
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𝑤 = 
−(3iz+5) 

z+1 
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Prob4. Find the bilinear transformation that maps the points (∞, 𝒊, 𝟎) into the points 

(𝟎, 𝒊, ∞). 

 

Sol: we know that 
(𝑤−𝑤1)(𝑤2−𝑤3) 

= 
(𝑧−𝑧1)(𝑧2−𝑧3) 

(𝑤1−𝑤2)(𝑤3−𝑤) (𝑧1−𝑧2)(𝑧3−𝑧) 

 
(𝑤−0)(𝑖−∞) 

= 
(𝑧−∞)(𝑖−0) 

(0−𝑖)(∞−𝑤) (∞−𝑖)(0−𝑧) 
 

1 
𝑤 = − 

𝑧
 

Prob 5. Show that transformation 𝒘 = 
𝒛−𝒊 

maps the real axis in the Z-plane in to the 
𝒛+𝒊 

unit circle |𝒘| = 𝟏 in the W-plane. 

Sol:Given transformation is 𝒘 = 
𝒛−𝒊

 
𝒛+𝒊 

 

Unit circle in w-plane is |𝑤| = 1 
 

|
𝒛−𝒊

| = 1 
𝒛+𝒊 

 

|𝒛 − 𝒊| = |𝒛 + 𝒊| 
 

|𝒙 + 𝒊(𝒚 − 𝟏)| = |𝒙 + 𝒊(𝒚 + 𝟏)| 

x2 + (y − 1)2 = x2 + (y + 1)2 

x2 + 𝑦2 − 2y + 1 = x2 + y2 + 2y + 1 
 

4𝑦 = 0 
 

𝑦 = 0 which is a real axis in Z-plane. 
 

Prob6. Show that the transformation 𝒘 = 
𝒛−𝒊 

transforms |𝒘| ≤ 𝟏 into upper half plane 
𝒛+𝒊 

(i.e img(z)>0) 

Sol: consider the transformation 𝑤 = 
𝑧−𝑖

 
𝑧+𝑖 

 

�̅�  = 
�̅�+𝑖 

𝑧−̅𝑖 
 

𝑤�̅� − 1 = 
𝑧−𝑖 

. 
�̅�+𝑖  

− 1 
𝑧+𝑖  𝑧−̅𝑖 

 

= 
(̅𝑧+𝑖)(𝑧−𝑖)−(𝑧+𝑖)(�̅�−𝑖) 

(̅𝑧−𝑖)(𝑧+𝑖) 

 

= 
2𝑖(𝑧−�̅�) 

|𝑧+𝑖|2 

 

𝑤�̅� − 1 =   
−4𝑦

 
|𝑧+𝑖|2 

 

|𝑤|2 − 1 = 
−4𝑦

 
|𝑧+𝑖|2 

--------------(1) 
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Given |𝒘| ≤ 𝟏 
 

if |𝑤| = 1 then |𝑤|2 = 1 ⇒ 𝑦 = 0 (form (1)) which is a real axis in Z-plane. 

therefore circle |𝑤| = 1 in W-plane transformed straight line 𝑦 = 0 in Z-plane. 

If |𝑤| < 1 then 𝑦 > 0 (form (1)) 

i.e img(z)>0 
 

i.e Upper half of Z-plane. 

Hence |𝑤| ≤ 1 is transformed into upper half plane (i.e img(z)>0 ) unde 

transformation 𝑤 = 
𝑧−𝑖

. 
𝑧+𝑖 

 

Prob7. Show that the relation 𝒘 = 
𝟓−𝟒𝒛

 
𝟒𝒛−𝟐 

transforms the circle |𝒛| = 𝟏 into a circle of 

radius unity in the W-plane. 

Sol: Given transformation is 𝑤 = 
5−4𝑧 ---------- 

(1) 
4𝑧−2 

 

solving (1) for 𝑧 
 

𝒛 = 
𝟓+𝟐𝒘 

𝟒(𝒘+𝟏) 
 

|𝒛| = 𝟏 
 

  𝟓+𝟐𝒘   
| | = 1 

𝟒(𝒘+𝟏) 
 

|𝟓 + 𝟐𝒘| = |𝟒(𝒘 + 𝟏)| 
 

𝒘 = 𝒖 + 𝒊𝒗 
 

|𝟓 + 𝟐𝒖 + 𝟐𝒊𝒗| = |𝟒𝒖 + 𝟒𝒊𝒗 + 𝟏| 
 

|(𝟓 + 𝟐𝒖) + 𝟐𝒊𝒗| = |(𝟒𝒖 + 𝟏) + 𝟒𝒊𝒗| 
 

√(𝟓 + 𝟐𝒖)𝟐 + 𝟒𝒗𝟐 = √(𝟒𝒖 + 𝟏)𝟐 + 𝟏𝟔𝒗𝟐 

𝒖𝟐 + 𝒗𝟐 + 𝒖 − 
𝟑 

= 𝟎 
𝟒 

 

it is the circle with center 𝐶 = (−1/2,0) and 𝑟 = 1 in W-plane. 

The Image of a circle |𝑧| = 1 in Z-plane is a circle 𝑢2 + 𝑣2 + 𝑢 − 
3 

= 0 in W-plane under 
4 

the transformation 𝑤 = 
5−4𝑧

. 
4𝑧−2 
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