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Numerical Methods and Complex Variables
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Objectives: To learn

e Numerical methods for solving ordinary differential equations.

e The properties of Laplace Transform, Inverse Laplace Transform and Convolution
theorem.

o Differentiation and integration of complex valued functions. Evaluation of integrals
using Cauchy’s integral formula.

e Taylor’s series, and Laurent’s series expansions of complex functions, evaluation of
integrals using residue theorem.

e Transform a given function from z - plane to w — plane. Identify the transformations
like translation, magnification, rotation, reflection, inversion, and Properties of bilinear
transformations.

UNIT - I: Numerical Methods

Definition of Interpolation,Finding root by Iterative method, Solving first order ODE by
Picards method, Taylors series method for solving second order ODE,Runge-Kutta method for
solving second order ODE and Numerical Differentiation.

UNIT -11: Laplace Transforms

Definition of Laplace transform, domain of the function and Kernel for the Laplace transforms,
Existence of Laplace transform, Laplace transform of standard functions, first shifting
Theorem, Laplace transform of functions when they are multiplied or divided by “t”, Laplace
transforms of derivatives and integrals of functions, Unit step function, Periodic function.

Inverse Laplace transform by Partial fractions, Inverse Laplace transforms of functions when

they are multiplied or divided by ”’s”, Inverse Laplace Transforms of derivatives and integrals
of functions, Convolution theorem.Solving ordinary differential equations by Laplace

transforms.

UNIT — I11: Analytic functions

Complex functions and its representation on Argand plane, Concepts of limit,continuity,
differentiability, Analyticity, and Cauchy-Riemann conditions, Harmonic functions — Milne —
Thompson method. Line integral — Evaluation along a path and by indefinite integration —
Cauchy’s integral theorem (singly and multiply connected regions) — Cauchy’s integral formula
— Generalized integral formula.




UNIT — IV: Singularities and Residues

Radius of convergence — Expansion in Taylor’s series, Laurent series. Singular point — Isolated
singular point — pole of order m — essential singularity. Residue — Evaluation of residue by
formula and by Laurent series — Residue theorem. Evaluation of integrals of the type

b} o427
/ flr)dr / fleos®, sin®)de
(@) Improper real integrals ./ —~ (b) /e

UNIT - V: Conformal Mappings

Conformal mapping: Transformation of z-plane to w-plane by a function, Conformal
transformation. Standard transformations- Translation; Magnification and rotation; inversion
and reflection, Transformations like e, log z, z2, and Bilinear transformation. Properties of
Bilinear transformation, determination of bilinear transformation when mappings of 3 points
are given (cross ratio).

TEXT BOOKS:

1) Higher Engineering Mathematics by B.S. Grewal, Khanna Publishers.
i) Higher Engineering Mathematics by Ramana B.V, Tata McGraw Hill.
iif) Complex Variables : Theory and Applications by H.S Kasana.

REFERENCES:

i) Complex Variables by Murray Spiegel,Seymour Lipschutz, et al. by Schaum’s outlines
series.

iii) Advanced Engineering Mathematics by Kreyszig, John Wiley & Sons.

iii) Advnced Engineering Mathematics by Michael Greenberg —Pearson publishers.

Course Outcomes:  After going through this course the students will be able to

1. Understand the Numerical differentiation and able to solve the second order ODE by
Numerical methods.

2. Solve differential equations with initial conditions using Laplace Transformation.

3. Analyze the complex functions with reference to their analyticity and integration
using Cauchy’s integral theorem.

4. Find the Taylor’s and Laurent series expansion of complex functions and solution of
improper integrals can be obtained by Cauchy’s-Residue theorem.

5. Understand the conformal transformations of complex functions can be dealt with
ease.




UNIT-I
NUMERICAL METHODS




INTRODUCTION-INTERPOLATION

Using mathematical modeling, most of the problems in engg and physical and
economical sciences can be formulated in terms of systems of linear or non linearequations,
ordinary or partial differential equations or Integra equations. In majority of the cases, the
solutions to these problems in analytical form are non-existent or difficult or not amenable
for direct interpretation. In all such problems, numerical analysis provides approximate
solutions practical and amenable for analysis. Numerical analysis does not strive for
exaxtness.instaed.it yields approximations with specified degree of accuracy. The early
disadvantages of the several numbers of computations involved has been removed through
high speed computation using computers, giving results which are accurate, reliable and
fast. Numerical is not only a science but also an ‘art’ because the choice of ‘appropriate’
procedure which ‘best’ suits to a given problem yields ‘good’ solutions.

Approximations curve is the graph of data obtained through measurement of
observation. Curve fitting is the process of finding the “best fit” curve since different
approximation curves can be obtained for the same data. Least squares method is the best
curve fitting by a sum of exponentials, linear weighted and non-linear weighted least
squares approximation.

Definition:

If we consider the statement y = f (x); Xo < X< Xn We understand that we can find the
value of y, corresponding to every value of x in the range x, <x<x,. If the function f (x) is
single valued and continuous and is known explicitly then the values of f (x) for certain values

of x like xo, X1,.c.en... x, can be calculated. The problem now is if we are given the set of tabular

values




Y0

Y1

V2

Yn




Satisfying the relation y = f (x) and the explicit definition of f (x) is not known, it is
possible to find a simple function say ¢(x) suchthat f(x) and ¢(x) agree at the set of
tabulated points. This process to finding ¢ (x) is called interpolation. If ¢ (x) is a polynomial
then the process is called polynomial interpolation and ¢ (x) is called interpolating polynomial.

In our study we are concerned with polynomial interpolation

OR

Let X,,X; ————X, bethevaluesxand y,y,y,———,y bethe valuesof yand y = f(x)

0 1 2 n
be a unknown function .The process to find the value of the unknown function y = f(x) when
the given value of x and the value of x lies within the limits xoto x, is called interpolation

ITERATION METHOD:

Consider an equation f(x)=0, which can taken in the form x =¢(x) ,where ¢(x) satisfies the
following conditions:

() for two real numbersaand b ,a<x<b and
(i)  forallx and x” lying in the interval (a,b),we have|o’(x) < 1| ,for all x.

procedure:

put X1 =¢(xo0 ) and take x1 as the first approximation of a .where o has a unique root in
the interval (a,b).

next we put X2 =@(x2) and take x> as the second approximation of a. Continuing the process
,we get the third approximation X3 ,the fourth approximation x4 and so on.

The n" approximation is given by X =¢(xn-1) ,n>1. Is called an iterative formula.

In this process of finding successive approximations of the root a ,an approximation of a is
obtained by substituting the preceding approximation in the function @(x) which is known .such
a process is called an iteration process.the n' approximation xn is called the n™" iterate.

A formula X, =p(xn-1),n>1 is called an iterative formula.
4




Example:1

By the fixed point iteration process, find the root correct to 3-decial places, of the equation
X=CO0SX, near x=m/4.

Sol:The given equation is of the form x=¢(x),where @(x)=cosx. |¢@'(x)| = [sinx| < 1 ,for all x.

Hence,the iteration process x» =¢(xn-1) iS convergent in every interval .since the root is required
near /4 ,we take the initial approximation of the root as xo=n/4 =0.7853.

Then ,by iteration formula Xn=¢(xn-1),
X1=@(x0)=cos(n/4)=0.7071 ,
X2=(x1)=c0S(x1) =0.7602 ,
X3=C0SX2=0.7246 ,
X4 =C0SX3=0.7487 ,
X5=C0SX4 =0.7325 ,
X6=C0SX5=0.7434 ,
X7=C0sXe=0.7361 .
by observing these iterations ,we conclude the approximation as 0.739 for the required root .
Example:2

By the single point iteration method, find the root of the equation x3-2x—5=0 which lies near
X=2.

Sol: Given equation is x3-2x-5=0, x3=2x+5, x=(2x+5)*3

This is of the form x=¢(x), (P’(X):(—Zs)m
3(2x+

We observe that | (x)|<1 for 2<x<3.

Hence the iteration for @(x) near x=2 converges.LetS us take the initial approximation for the
root as Xo=2.

X1=¢(x0)=(2*2+5)*3=91=2.08008, X»=2.09235,
X5=2.09422, x4=2.09450, X5=2.09454, xs=2.09455, x7=2.09455




Since Xxs and x7 are identical upto 5 decimal places,we take x7=2.09455 as the required root,
correct to 5 places of decimals.

Example:3
Find the positive root of x*-x-10=0 by iteration.
Sol: Given equation can be written as x=¢(x) in many ways such as

X=x*-10, x=10/x3-1, x=(x+10)**, only x=(x+10)** satisfies the converge criteria
0’ (x)<1|.

So we take iteration formula as xi+1=(xi+10)*4,i=0,1,2....
We observe f(1)<0, f(2)>0 from the given equation.
Hence the root lies between 1 and?2.

Choosing xozle.S, we get x1=(1.5+10)4=1.8415, x,=1.8550, x3=1.8556,X4=1.8556
2

Hence the root is 1.8556 correct to four decimal places.

PICARDS METHOD OF SUCCESSIVE APPROXIMATIONS

Picard method is an iterative method. An iterative method gives a sequence of approximations

yO),yAH(x) — — —— — y®™(x), to the solution of differential equations such that the nth
approximation is obtained from one or more previous approximations.

Consider the differential equation %}L = f(x, y) with initial condition y(x ;) = y, then Picards
X
Approximation is given by the following formulae

X
yu(x) = yo + | f(x, yn-1)dx wheren =1,2,3

X0

Probl : Find the value of y fo x=0.4 by Picards method, given that gz =y(0)=0

Sol: Given (x,y) =x2+y%2 x0o=0,y0 =0

From Picards method we have




X
y®™(x) = yo + [ f(x, yn-1)dx wheren = 1,2,3 .....

X0

Now first approximation given by y()(x) = f;(xz)dx = x_3
Second approximation is given by y@(x) = 2 o, e
fo (x +(3) )dx = 3 63
Hence we take y@(x) is approximation for y(x)
x x3 X3 x7
LY Y@@ = [ R+ (PHdx =T

043 047

TAYLOR SERIES METHOD FOR SECOND ORDER DIFFERENTIAL EQUATION:

Consider a second order differential equation

AR ICRR DY D FE NG T U (1)
dx? 0 0 0 0
Putdy =z, z1 = di= f(x,y,2) -—-- -- (@)
dx dx
withy(xo) = yo (3)
z(x0) = Z0 = yol---mmmmmmmmmmmmemee- 4)

By Taylors series method

z =z +hz1+Mz 14— _ ,Wherez =z(x )andx —x = h---(5)
10 0 4 0 1 1 10

h2
y1 = Yyo+ hyo! + 53’011 - )

2
Y=y 4h o+ z (6)

1 0 0




21 0

Equation (2) gives z' and differentiating it, we get z", z", ... ... ... Hence zo, zo', .... Can be
obtained and using (6) and (5) we can get yiand z1. From yiand z1, get z1, z1', .... At (x1, y1).




L and usin
Againusingz =z +hz1 +h_zz 4 ————-— , we get g
2 1 1 a1 2
y =y +hy1+}iyll+ ————— Wwe gety .
2 1 1 o 1 2

Examplel: Evaluate y(1.1) and y(1.2) fromdz_y + y2 d_y =x3,y(1)=1,y(1) =1, by
dx2 dx
using Taylor series method.

2
Solution: Given 4 + y2 @ = x3 (1)
dx? dx
Puty = z, (1) becomes z' + y2z = x3 = z = x3 — y2z-------- (2)
yo=y(1)=1andzo =landxo = 1 — — — — ~--=-—----m----- 3)
Herez =z +hz 1+ z 14— ———— 4)
10 0 0

From (2), we have z' = 3x2 — y2z — 2yy'z and y11 = z1
lel — 6x —_ yZZ].]. —_ Zyylzl —_ 2 [yzyll + ylzz + yylzl]andylll — le

zol=1—1=0, zo!! =3x0%2—y02z0 —2yyoz =3—-0—-2=1
0

z111 = 6x — y2z11 — 2yylzl — 2 [yzyll + ylzz + yy1z1]=6-0-1-2(1+0+0)=3.

T (0.1)2
Substituting in (4) we get z1 = 1+ (0.1)1 + T(1) + — ——=1.1005
By Taylor series for y1,
h? 11 0.01
y1 = y(0.1) = yo + hyo! + 5yo +—-———== =1+ (0.1)z0 + T(201) +——

y1 = y(0.1) = 1.1002

2
Similarlyy =y(x )=y +hy 1+ y 4 —————
2 2 1 1 g1

2
y = y(x) =11002+ @z + "V zl4—c e (5)

2 2 1 o, 1




z1! = —1.3311z0!! = 3x12 —y12z1 — 2y y z

Using (5),

y1 =y(1.1) = 1.1002and y2 = y(1.2) = 1.2034.

10
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1

1

—1.0244




RUNGE-KUTTA METHOD FOR SOLVING SECOND ORDER ODE

Any differential equation of second or Higher order differential equations are best treated by
transforming the given equation into a system of first order simultaneous differential equations
which can be solved as usual.

Consider, for example the second order differential equation:

v = (), y(x0) = yo,¥(x0) = g

SUbSEItULING & = Z...oocieieee e 1)
dx
We get 4z = ﬁ = f(x,y,2),using (1) ............ (2)
dx  dx?

Given y(xo0) = yo and y'(x0) = z(x0) = y,

Equations (1) and (2) constitute the equivalent system of simultaneous equations where
filx,y,2z) =z, f2(x,v,2) = f(x,y,z) given. Also y(0) and z(0) ae given.

Example: Solve y" — x(y )% + y2 = 0 using R-K method for x = 0.2 given y(0) = 1,y'(0) = 0
taking h = 0.2.
Solution: Given y" — x(y)2+y2 =0

Substituting & = fl(x, VoZ) = Z ceoeeeieeenie e Q)
dx

The given equation reduces to
dz

_ =xz2-yr=f(xy2) e (2)
dx 2
Given xo = 0,y0 = 1,20 = y, = 0. Also h = 0.2
By R-K algorithm,
k1 = hf1(xo, yo,20) = (0.2)£1(0,1,0) =0
i = hf2(xo, y0, z0) = (0.2)f2(0,1,0) = —0.2
he kb () ( )

ke=hfi(o+ . yo+ , z+ )= 02 /101101 =-002

11




hyy +ki,z+0 () ( )

)

L=hfz(o+, o 2 o z = 02f011-01 =-0199%

hy +ka,z4b () ( )
— 0 — 0.2 f10.1,0.99,—-0.0999 = —0.01998
k3 hf1(x0+2 2 o0 2)
hy +ke z 4+ () ( )

b=hfz(o+, o , o )= 0210109900999 =-01958

ka = hf1(xo0 + h, yo + k3, zo + I3) = (0.2)£1(0.2,0.98,—0.1958) = —0.0392
L = hf2(xo + h, yo + k3, zo + 13) = (0.2)f2(0.2,0.98, —0.1958) = —0.1905

1
Y1 = Yo +g (k1 + 2k2 + 2k3 + k4)

e, y(0.2) =1+ [0+ 2(—0.02 — 0.01998) — 0.0392] = 0.98014
6

NUMERICAL DIFFERENTIATION: The numerical differentiation techniques can be used in
the following two situations.

1. The function values corresponding to distinct values of the argument are known but the
function is unknown. For example we may know values of f(x) at various values of x,say
Xi JA=12, . n in a tabulated form.

2. The function to be differentiated is complicated and therefore it is difficult to
differentiate by usual procedures.

Derivatives using finite differences:

1. Derivatives using Newton’s forward difference formula:

Suppose that we are given at a set of values (xi,yi) , i = 1,2, ccoverneen. n
We want to find the derivative of y=f(x) passing through the (n+1) points, at a nearer to
the staring value x = xo

Newton’s forward difference interpolation formula is
y=y tuy peLg 4 peDEDE o (1)
0 0 2! 0 3! 0

X—X
wherep =~

Differentating, eq(1)

12
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dzy d?y 1 [A2y0 — A3yo + 11

[ = (——= = — —A4y0 + ]
(dxz) (de) h?
X=X0 p=0
Newton’s Backward difference interpolation formula is
y=y +p¥y +M@, +M@, + o (1)
n n 21 n 31 n
wherep = (x=x0)
h
Differentating,eq(1)
(@) = (ﬂ) =1 1 2 1 3 1 4
dx =y, dx -9 h[vyn+2V yn+3V yn+4Vy ]

dzy d%y 1 11

— — = [V2y, + 3y, + —V2y, + ]

( dxz)x=x0 ( dxz)p=0 2 [V2yn + Voyn + 5V

1. Find the first and second derivatives of the function tabulated below at the point x=1891

Year X 1891 1901 1911 1921 1931
Population in 46 66 81 93 101
thousands

Solution: The Forward difference table is

X y A AZ A3 A4

1891 46~

20\\ \
1901 66 -5\

15 2
1911 81 -3 -3

12 -1

14




1921

93

15




1931 101

Given h = 10,x0 = 1891, yo = 46 By Newton’s forward interpolation formula

(dy) = (ﬂ) :1 1 2 l 3 l 4
- - 0t
dX yoyy  dX pq  p[BYO—,A Yot A yo— A y ]
1 1 1 1
=_[20— (-5 + (2) = (=3) + - rnt]
10 2 3 4
=2.1616
dzy d%y 1 1, .\
g2 == = 2 - 3 - e e we
(dxz) = (W) = h—Z[A yo — A3yo + 12 Yo ]
X=X0 p=0
= L[(=5) = @)+ Z(=3) + ]
102 12
=-0.0975

2. Find the first and second derivatives of the function tabulated below at the point x=1931

Year X 1891 1901 1911 1921 1931
Population in 46 66 81 93 101
thousands

Solution: The Backward difference table is

X y Vyn | Viyn | V3yy V4yn
1891 46
20
1901 66 -5
15 2
1911 81 -3 -3

16




1921

93

17




1931 101

Given h = 10,x» = 1931, y» = 101 By Newton’s backward interpolation formula

@ =@ =1 1, 1, 1,
=B+ D+ D+ =D ]
10 2 3 4
=0.4916
d2y dzy 1 11
— — = [V2yn 4+ V3yn 4+ — V2 4 e
(d"z)x—x (G2 =Vt Vom0 |
0 p=0
1 11
= LD+ (D +Z(3) ]
10 12
=-0.0775
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UNIT I
LAPLACE
TRANSFORMS




LAPLACE TRANSFORMS

INTRODUCTION

Laplace Transformations were introduced by Pierre Simmon Marquis De Laplace (1749-
1827), a French Mathematician known as a Newton of French. Laplace Transformations is a
powerful technique, it replaces operations of calculus by operations of algebra. An Ordinary
(or) Partial Differential Equation together with Initial conditions is reduced to a problem of

solving an Algebraic Equation by this method.

USES
e Particular Solution is obtained without first determining the general solution.

e Non-Homogeneous Equations are solved without obtaining the complementary
integral.

e L.T is applicable not only to continuous functions but also to piecewise continuous
functions, complicated periodic functions, step functions and impulse functions.

APPLICATIONS:

e L.T is very useful in obtaining solution of linear differential equations, both ordinary
and partial, solution of system of simultaneous differential equations, solution of
integral equations, solution of linear difference equations and in the evaluation of
definite integrals.

DEFINITION:
Let f (t) be a function of*t’ defined for all positive values of t. Then Laplace
transforms of f (t) is denoted by L {f (t)} is defined by

L{f ()} :Je‘S‘f (t)dt =1 (s) > (1)
provided that the integral exists. Here the parameter‘s’ is a real (or) complex number.

The relation (1) can also be written as f (t) = L {f_(s)}
In such a case the function f(t) is called the inverse Laplace transform of T(s) .The
symbol ‘L’ which transform f(t) into ?(s) is called the Laplace transform operator. The

symbol ‘LY which transforms f(s) to f () can be called the inverse Laplace transform

operator.

Conditions for Laplace Transforms

20




Exponential order: A function f (t) is said to be of exponential order ‘a’ If

finite quantity.

Ex: (i). The function t?is of exponential order

It e*'f (t)=a

—>00

(i1). The function e is not of exponential order (which is not finite quantity)

Piece — wise Continuous function: A function f (t) is said to be piece-wise continuous over

the closed interval [a,b] if it is defined on that interval and is such that the interval can be

divided into a finite number of sub intervals, in each of which f (t) is continuous and has both

right and left hand limits at every end point of the subinterval.

Sufficient conditions for the existence of the Laplace transform of a function:

The function f (t) must satisfy the following conditions for the existence of the L.T.

(1).The function f(t) must be piece-wise continuous (or sectionally continuous) in any limited

interval 0<a<t<b.

(i1). The function f (t) is of exponential order.

Laplace Transforms of standard functions:

1
1. Prove that '-{1} =—
S

Proof: By definition

L1y =eradt € | =87 - 01 1jifss0
0 LSk, - -s

L1} ="1] (e =0)

2. Provethat L{t}= 13’2

Proof: By definition

R [ fes) e T
L{t}=[etwdt=[t] _ [-[1._ dt]

0 LK_S) - JO

n+1

n! . .
3. Prove that L{t”} = where n is a +ve integer

0

: el

e S

t




Proof: By definition L{tn} _ IO e.tdt = Lt”,

—S

=0-0+ n_‘me‘“t”-ldt

SO

22
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nt™l__ dt
-




_Ny e
= SL{t 1}

similarly L{t""} = n—;l'-{t”_z}

2
L{g2l = D=2 fyne
fir1)="=2 L frr2)
By repeatedly applying this, we get
nn-1n-2 21

L{t} == Pt ;L{t“ "

L{l}— -

n+1
S

w

Note: L{t“} can also be expressed in terms of Gamma function.

e, Lo} 2 T

.T(n+1)=n!)

n+1 n+1
S S

Def: If n>0 then Gamma function is defined by F I e~ *x"Ldx

We have L j et t"dt

Putting x=st on R.H.S, we get
. (x=st )

| |
dx 1

L{tn}tz e X 1
,f Py _
0 Sgs Lng—dtJ
= 1 ? e xdx (When t=0,x=0)
s”*l-[0 LWhen t=oo,x=oo)|

1
L {t”} - T(n+1)

If 'n'is a +veinteger then T'(n +1) = n!

L{t”}=”!s)n+l

Note: The following are some important properties of the Gamma function.

L. T(n+1)=nI(n)if n>0

2. T(n+1)=nlif nis a +ve integer

23




3. r()=1r( 12p = I

Note: Value of F(n) in terms of factorial

24




[(2) =1xI(1) =11
[(3) = 2x0(2) = 2!
[(4)=3xI(3) =3 ;04 50 on.

In general F(n +l) =n! provided ‘n’ is a +ve integer.

Taking n=0, it defined 0! = T(1) =1
4. Prove that L{eat} " a
Proof: By definition,
L{e"}= I:e‘S‘ edt = I :e‘(s‘a)‘dt
o (sax T
R

™ 1 .
—€ e if s>a

S—a S—a S—a

Similarly L{e™}= L its>-a
s+a

5. Prove that L{sinhat} = e

Proof: L{sinh at = L (e —e] = ih{eat} -L{e™}]
) rool ]
L2 7

1] 1 1 ] 1fs+a-s+a]_ 2a a

2lsca seal 2l v | o2(sar) s-a

6. Prove that L{cosh at} =

s2 —a?

Proof: L fcoshat}= Lg(eat e l

L2
gy L fean] 11, 1)
EL{ e 2{57% sva
_1ls+a+s-a]_ 2s s

_E|_ s2 a2 J_Z(sz—az) s2—a?

7. Prove that L{sinat}: —
2 +a

25




. _ © st
Proof: By definition, L{smat}_J‘ e~ sin atdt

26




| [ e 1
[ e

=|_u(—ssinat—acosat)|w |__Ieaxsinbxdx: , , (asinbx—bcosbx) |
|s+a o | a +b |

a

% + &2

8. Prove that L{cosat} =

$? +a°

Proof: We know that L{ea‘} = L

S—a

Replace ‘a’ by ‘ia’ we get

L{eiat}= 1 _ S+ia
s—ia (s—ia)(s +ia)
i.e,L{cosat +isinat} = s+1a
§% +a?

Equating the real and imaginary parts on both sides, we have

L{cosat} =

and L{sinat} = SZL

s? +a? +a?

Solved Problems :

1. Find the Laplace transforms of (t?+1)?
Sol:  Here f(t) = (t2+1)? =t* + 2t +1

L{(t>+ 1)%}= L{t*+ 22+ 1}= L{t*}+ 2L{t°}+ L{1}

21 1 4 21 1
=y +2. +

4 42

st $ s ¢ S

1
_24 4.1 7 (244457 +5Y)

[e-at 1)
2. Find the Laplace transform of Li " j

[eat—1] 1 l|_ —at 1

—at

- _{ —
W e e e U

Carn Ut

aLs+a SJ s(s +a)
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3.

Sol:

Find the Laplace transform of Sin2tcost

W.K.T sin2tcost =—1 [2sin 2t cost] = %[sin 3t +sint]

- L{sin 2t cost} = L{
L

1[sin 3t+sint]
2

]

(= 1{U_{sin 3t} +L{sint} ]
| 2
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_1|' 3 + ! —|= 2(82+3)

2l s2+9 s241] (1) +9)

4, Find the Laplace transform of Cosh?2t

Sol:  w.k.t cosh? 2t = E[l+ cosh 4t]
2

L { cosh? 2t}= 1 [L(1) + L{cosh 4t}]
2

2 _
i1, s 1§

ols s2-16] s -16)

5. Find the Laplace transform of Cos®3t
Sol:  Since cos9t=cos3(3t)

1
c0sOt=4cos33t-3cos3t (Or) €os*3t= Z[cos 9t + 3cos 3t]

L{cos®3t}= L L{cos9t}+ 3 L{cos 3t}

4 4
_1 S 3 S
- +—.
4 2481 45°+9
s[ 1 3 ] s(s?+63)
—+ =

“al[Fver 49 (52 +9)(s? +81)

6. Find the Laplace transforms of (sint+cost)’

Sol:  Since (sint+cost)2:sin2t+coszt+25intcost =1+sin 2t

L{(sint + cost)?}= L{1+ sin2t}
= L{1}+ L{sin2t}

1 2 S,+2s+4
= -+ =

; s2+4 s(s2 +4)

7. Find the Laplace transforms of cost cos2t cos3t

cost cos 2t cos 3t = E .ost[2.cos 2t.cos 3t

Sol:
2

29




1
cost[cos5t + cost]= ~ [costcos5t + cos? t]
2

[2costcosSt +2c0s? t] = i[(cos 6t +cos 4t) +(L1+cos 2t) |

= I e

= Z[l+ C0s 2t + cos4t + cos6t]

30




.. L{costcos 2t cos3t} = 3L{1+ oS 2t + cos 4t + cos 6t}
4

= %[L{1}+ L{cos 2t} + L{cos 4t} + L{cos 6t}]

_ 11 s S s ]
="' + +
4Ls s2+4 s2+16 52+36J
8. Find L.T. of Sin%t

Sol: L{sin? t} = L [1-cos 2t )
2 |

= i[L{l}— L{cos2t}]= _1 ri _s

2 ZLS Sz+4J

9. Find L(Vt)
F( ! +1\
Sol: L{\/{} = |L (t T :—l\%—/l where n is not an integer
L J l+l

~T(n+1) =nI(n)

10.  Find L {sin(mt + a)}, where o a constant is

Sol: L{sin(wt + a)} = L{sinwtcosa + coswtsina}

= cosa L{sinwt} + sina L{coswt}

+ sina
s24w? 5242

= cosa

Properties of Laplace transform:
Linearity Property:

Theorem1: The Laplace transform operator is a Linear operator.

ie. (i).L{cf (t)}=cL{f(t)} G.L{f(t)+g(t)}=L{f (t)}+L{o(t)}where
constant
Proof: (i) By definition

L{cf (1)} ::[e‘“cf (t)dt :cj:e‘Stf (t)dt=cL{f (1)}

(if) By definition
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L{f () +g ()} =[es{f(t)+g(t)}at

0
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= Iest f(t)dt +Ee“g (dt=L{f (t)}+L{g (1)}

Similarly the inverse transforms of the sum of two or more functions of ‘s’ is the sum of the

inverse transforms of the separate functions.

Thus, L {1 (s)+g(s) f =L {F () }+ L {a(s)} = f (t)+a (1)
Corollary: L{c,f (t)+c,g(t)}=c,L{f (t)}+c,L{g(t)}, wherecy, c, are constants

Theorem2: If a, b, ¢ be any constants and f, g, h any functions of t, then
L{af (t) + bg(t)- ch(t)}= a.L{f ()}+ b.L{g(t)}- cL{h(t)}
Proof: By the definition

e-af (t) +bg(t) — ch(t)}dt

Sy 8

L{af (t) + bg(t) — ch()} =

= a.j e f (t)dt+ bf etg(t)dt —cj e*h(t)dt
0 0 0

= a.L{f (t)}+bL{g(t)}—cL{h(t)}

Change of Scale Property:
I then L{fG@}=" (s)
L{f ()}= f(s) a.f LaJ

Proof: By the definition we have

o0

L{f (at)} = !e—st f (at)dt
du

put at=u=dt=__
a

when t >0 then u—o andt=0 thenu=0

0 7(5\

su u 1 )
L{f(at)}:.r e—erf(u)d—u _ l'Ie (gl f(u)du :—.f-( CJ)
0 a a 0 a
Solved Problems :

1. Find L{sinh 3t}
Sol: L{sinht} =

1 —
— =10

s2

33




~ L{sinh 3t} = ~ f(5/ )(Change of scale property)
3

3
2

(33)2 4 S -9

w|l = W R
H
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2. Find L{cos 7t}
Sol: L{cost} =

—— = F(5) (say)

L{cos 7t} = i 5/ ) (Change of scale property)
7
L{cos 7t} = ;F_Z_ TN
/7) +1

First shifting property:
If L{f(t)}= f(s)thenL{e® f(t)}= f(s- a)
Proof: By the definition

L{e™ £ (1)} = ! estet £ (t)dt

- J‘e*(sfa)t f ('[ ) dt
0

- je*”t f (t)dtwhereu=s-a
0

= f(u) = f(s-a)

Note: Using the above property, we have L{e'™® f(t)}= f(s+ a)

Applications of this property, we obtain the following results
1L L{e*t}= nt [ = nt|

ol e

2. L{e*sinbt} = b |__ _L(sinbt) = b |

(s—a)2+b2[(. s +b2J1

s—a s

3. L{e* cosbt} = L(cosbt) =

(s—a)t2)+b2 L|_ S +b2J_|
4. L{e* sinhbt}= ~ L(sinhbt) =

(s—a)Z—bZF bZJW
5. L{e“coshbt}= ° | L(coshbt)=

(s-ay b7 | s?—b? |
Solved Problems :
1. Find the Laplace Transforms of te™

Sol:  Since




1
L{y= >
S4

Now applying first shifting theorem, we get
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3!
L{t3 e 3t}: W

2. Find the L.T. of et cos 2t

Sol:  Since L{cos 2t} = _°
s2+4

Now applying first shifting theorem, we get
s+1 s+1
(s+1)2+4 S2+2s+5

L{e~t cos2t} =

3. Find L.T of e2tcos?t

Sol: - L [e?tcos?t] = L [e2t I+eos2ty

]
:51 {L[e?t] + L[e%cos2t]}

_1 (1 )+ 1{L[cos2t]}

2 s-2 2 §5=2
_1 L)+ 1 s=2

2 s=2 2 (s—2)2+22
_1 (i)+ 1 s—2

2 s-2 2 (s2—4s+8)

Second translation (or) second Shifting theorem:

If L{f(t)} = f(s)and g(t) = (g9 &athen L{g(t)} = e~of(s)
Proof: By the definition

Lg®O}= =estg®)dt= “est g)dt + ~ et g(t)dt
I I Ja
= fooo e=st.odt + [~ e=st f(t —a)dt = [~ e=st f(t — a)dt

Lett-a=usothatdt=du Andalsou=0whent=aand u — o whent —
S L{g®)} = ® p-sta) fwdu =e-as “e fwWdu = e=as @ e-st f(t)dt

Jo Jo Ja
= e wL{f(1)} = e~sf(s)
Another Form of second shifting theorem:
If L{f ()} = f(s) and a > 0 then L{F(t — a)H(t — a)} = e~=f(s)

1,t>0 _ - . .
where H (t) = {0 { <o @ndH( is called Heaviside unit step function.

Proof: By the definition
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LEF(t — a)H(t — )} = | e~ F(t = @)H(t — a)dt - (1)
0
Put t-a=u so that dt= du and also when t=0, u=-awhent — o, u— o0

Then L{F(t —a)H(t — a)} = f: e—swta) F(u)H(u)du. [by eq(1)]
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0 0

= [ e U DF (W) H (u)du + [ IF (u)H (u)du
a 0
0 e=stuta) F(u).0du + f°° e=stta) F(u). 1du

=f_a 0

[Since By the definition of H (t)]

= fo e 5Wwtd) F(y)du = e J, e F(w)du

0

= e*saje*St F (t)dt by property of Definite Integrals
0

= e wL{F(t)} = e~af(s)
Note: H (t - a)isalsodenoted byu (t —a)

Solved Problems
[cos(t -T ‘) ift>7 ‘
3 3

1. Find the L.T. of g (t) when 9(t) J
0 if t <ﬂ3[

Sol. Let f(t)=cost

o~ L{F(t)} = L{cost} = Sz;-l-l = }(s)

f(&=T/3)=cos(t ="/3),if t >T/3

t) =
Now applying second shifting theorem, then we get

—TS

Lig®} =7 (L) =2

2

s +1 s +1
2. Find the L.T. of (ii)(t — 2)3u(t — 2) (ii) e 3tu(t — 2)
Sol:  (i). Comparing the given function with f(t-a) u(t-a), we have a=2 and f(t)=t>
LUy =1} = 1= =7(s)
s4 s4
Now applying second shifting theorem, then we get

L{(t —2)3u(t —2)} = e 2s % _ 6%

s4

(ii). L{e—stu(t — 2)} = L{e—st=2, e=6u(t — 2)} = e~ L{e-3¢-Du(t — 2)}
f(t) = e3t then f(s) = L
s+3

Now applying second shifting theorem then, we get
39




L{e-3tu(t — 2)} = e 6.e"2s L

s+3

e—2(s+3)

s+3
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Multiplication by*‘t’:
Theorem: If L{f(£)} = F(s) then L{tf(t)} = ;_dT(s)

0

Proof: By the definition f (s)= J et f (1) dt
d d

75)}- _Ie_“f (t)dt

ds ds

By Leibnitz’s rule for differentiating under the integral sign,
d 0
S A= et ()t

ds 0 0S
= [—te 1 (t)dt
0

= — [T et {tf(D}dt = — L{tf(£)}
Thus L{tf(£)} = ;—jf(s)

SLEF®) = DR g

Note: Leibnitz’s Rule

If f (x,0) and—

5 f (x) be continuous functions of xand o then
a

d{ bf(x,a)dx} = b9 f(x, a)dx

da fa a o

Where a, b are constants independent of o
Solved Problems:

1. Find L.T of tcosat

N

Sol:  Since L{tcos at} =

s2+a?
d
L{tcosat}=—-"1_"
ds s2+a?
_—s%+a%-s2s _  s?—a?
(s2+a2)2  (s2+a?)2
2. Find t2sin at
Sol:  Since L{sin at} = _°
s2+q?

L{t2. sin at} = (—1)2 i( ‘)

ds? s24aq?

:i( —2as ) 2a(3sz—a2)

dsL(SZ +a2)2) (s? +a2)3
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3.

Find L.T of te'sin3t
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Sol:

Sol:

Sol:

Sol:

Sol.

Since L{sin 3t} = _°

s2+32
o L{tsin 3t} = i[ ’ 1= 6s Now using the shifting property, we get

ds s2+32 (52+9)2
Lite-tsin 3t} = _°C*D  _ _ 66+
((s+1)%2+9)2 (s2425+10)2
Find L{te2tsin 3t}
Since L{sin 3t} =

3

5249

~L {ezt sin 3t} = (o =

Lite?sin 3t} = (—1) * [ ] = (—1)[ P&
ds s2—4s+13 (s2—4s+13)2

3(2s-4)  6(s-2)

(s2-4s+13)° (s2—-4s+13)

. 2
Find the L.T. of (1+te*‘)
Since (1+te t)? =1+ 2tet + t2e~2t

AL(Ltet) =L {1+ 2L ftet) + L {t2e2)
EIERNRCAER

; 2(-1) £|\a|)+ (-1) dszks——ﬁ‘ )
1.2 dl a1 )
S+(s+1)2+ ds| (s +2), |
N )
1 2 2

:E (s+1)2 ' (s+2)3

Find the L.T of t%% (already we have solved by another method)

L{t3e—3t} — (_1)3 %{8_3’:}

— _d_3(i) _31=1)3

ds3 s+3 (s+3)*
_ 3
T (s+3)4

Find L{cosh at sin at}

. eft4e=at |
L{coshatsinat} =L{ __— sinat}
2

43




=1[L{e sin at} + L{e—% sin at}]
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f(t)=(t-1)", t>1

8. Find the L.T of the function -0 O<t<1

Sol: By the definition

Lf©)Y= “est f()dt = 'e=st f()dt + ~e-st f(t)dt
J J J

0 0 1
1 © 2
= [ etodt+[ e (t-1)"dt

e—st

:flme—“ (t— 1)2dt = [(t — 1)2 ]T —ffoz(t—l)gdt

=0+Zj°°efsf(t—1)dt
S1

Zr( ()" =e* ]
= R b -

oL ]
- 2r0+ 1 we*“dtw = (e‘“ Y - _Z(e’St )
SL S‘L J Szk_sjl s® 1
:__Z(O_e_s) _2e—s
s° s°

9. Find the L.T of f (t) defined as f () =3, t>2
=0, O<t<2

Sol:  L{f(O)} = [~ e-st f(t)dt

0

2 0
:joze f (t)dt+ [ e f (t)dt
= e st0dt+ | e=st3dt

0 2
0+ [ o3 =" (e %) = (0-e?)
2 S 2 S
- §e‘25
S

10. Find L{t cos(at + b)}
Sol: L{cos(at + b)} = L{cosat cos b — sin at sin b}
= cos b. L{cos at} — sin b L{sin at}

= cos b.
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L{t.cos(at + b)} = [cos b.

ds s24q2

s+a

—cosb"(_gg_agji}ﬂmﬁ /g
(5 Fa

\

46

— sin b.

1- sZs

s24q2

)

|

((s +a2) 0- aZS\

\

2\2

)




= ! |_(sz—az)z cosh —2assin b—|

0z |
(32 +a? )2 ]
11.  Find L.T of L [tetsint]
Sol: - We know that L[sint] =
N +1
L[tsint] = (-1) ZL[sin] =- (1 )=--B%
ds ds s2+1 (s241)2
— 2s
(s2+1)2

By First Shifting Theorem

L [tetsint] = [2r— =_26-D - 26-1)
(s +1) ((s—1)2+1)2  (s2-2s+2)2

s—=s—1
Division by‘t’:
Theorem: If L{f(t)} = F(s) then L {if(t)} = fs°° f(s)ds

Proof: We have f I e‘S‘f

Now integrating both sides w.r.t s from s to «, we have

TT(S)OIS =rlrfe SUf ()dt ﬂds

0 sLO

= _[:jw f (t)e~dsdt (Change the order of integration)

—I |_J' e‘S‘ds—ldt( _tis independent of*s’)

]
st\
=], f(t )( |t
)
= et/ Daror)L ' f(1))
0 t t

Solved Problems:
1.  Find L{L“‘}
Sol:  Since L{sint} = = f(s)

s24+1

Division by‘t’, we have

L{Sitﬂ} = [ f(s)ds = f:oﬁds

= [Tan~1s]? = Tan 1o — Tan~ls
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2.

=7 2‘—Tan—ls =cot™'s

sin at
Find the L.T of
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a

24aq2 ?(s)

Division by t, we have

Sol:  Since L{sinat} =

sinat o — oo
L = ["F(9)ds = [, 52 ds
1 s ||
=a. _[Tan1 iﬂs — Tan-o — Tan-!
a 34
T 2‘_Tan—l ( S aD — Cot—l SCJ
3. Evaluate L{=%°%%4
Sol:  Since L{1 —cosat} = L{1} — L{cos at} = i— s
s s%+a?
L {l—cos at} _ © (1__ N )dS
. f[ s wTar )
1 1
= Llog S—— |0g(S2 +a’ )
2 |
1 1l (& )
=_[2Iogs—log(sz+a2)} =_|log| 2 > i
2 s 20 (s +a Jk
[ T
11 )l S

@ |
2['09L1+a sJﬁ JJS = | logi-log , ., |

ey e N

\ — log/\ _
ook, o d=logl, | =log

s +d°

1-cost

Note: L { : } = Iog\/m (Putting a=1 in the above problem)
S

—at__,—b
4. FindL{Th

—tat_e—t
Sol: L 21 = )ds

t fs s-l-_a s+b

:[Iog(s+a)—log(s+b)T =|_Iog(s+a\—|w
a ¥k
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_ ___1 (s+a)

It{log b r—log ——
S —0 | b
[ EJ o J

=logl-log(s +a) + log(s +b) = MQ(S+b}
Ls+a
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5. Find L%{l‘ﬁ"“}*
Sol: L%” cost} Liél cosﬂ} ..... (1)
Now LJM - oL s ds=rlogs—llog(s2 +1)1
t s's s241 | 2 J
L J \ ) s
(RIS 2] 1 s?+1

|~ 2l 2
. [l-cost] =1 41
L|LTJ:J' Elogs—zds
U0 )
iog|K , f J|s —L 521'-—1|Ks3 J.sds
il (1) (¢+1) = ds |

2||_%L5Ltw s.log{ 1+ g )F—slog|\ o J+2L s JrlJ

il (1 1 1 ) 2 +1) T
=_[{Its] - + +..|-slog___}+2Tan"'s|
2( = \ & 28* 3¢ ) & | ],
zlﬁ ( 1) (=& SN XX x¥ x
~|140-slog| 1+ 5, |+2] “—=Tan s|¢| ~ _7 3 -7 +
ZU U Iy n .Llog(l+x)_x
:cot‘ls—zslog(u 52\
a L)
6.Find LT of e
Sol: WKT L[ea]=_"_ ,L[e—bt]zl_b
L' )= f(s)ds
- I
e—at_e—bt B (=] 1 p
L1 t ]_fs(s+a s+zs
= [log(s + a) — log(s + b)]?
= log("" )
s+b S
- log(*9)
1+

=log (1)-log (229
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=0- log (=+2) = log (:+2)
s+b s+a

Laplace transforms of Derivatives:

52




If f2(t) be continuous and L{f(t)} = f(s) then L{f1(t)} = sf(s) — f(0)

Proof: By the definition
LI} = 7 estfi(®de

0

~[ef (t)]: _ I “(~s)ef (t)dt (Integrating by parts)

0

=[ef ()] +s[ e f(t)dt
= Ite f (M)~ f(O) +s.L{f (1)}

Since f (t) is exponential order

~lte () =

~ L{f1 ()} = 0 — f(0) + sL{f (t)}
= sf(s) — (0)

The Laplace Transform of the second derivative f*(t) is similarly obtained.
~ L)} = s. L{F10)3 — £1(0)
= s.[s?(s)— f (O)]— f1(0)
=’ f_(s)—sf (0)-11(0)
L L) = s L) = f100)
= s[s2L{f (O} — sf(0) — f1(0)] — f11(0)
= SSL{f(®)} — s2f(0) — sf1(0) — f11(0)
Proceeding similarly, we have

LUfH(D} = SLF©)} — s71£(0) — 572f1(0) ... .. f7-1(0)

Note 1: L{fn(£)} = snf(s) if £(0) = 0 and f1(0) = 0, f11(0) = 0 ... fr-1(0) = 0

Note 2: Now |f(t)| < M.e% for allt = 0 and for some constants a amd M.
We have |e=stf(t)| = e=st|f(t)| < eat. Mext
=M.e=G-0t - 0ast - oo ifs>a

. 1 oestf(£) = 0 for s>a

o
t—oo

Solved Problems:
Using the theorem on transforms of derivatives, find the Laplace Transform of the

following functions.
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(i). €2 (ii). cosat

(iii). tsin at

54




(). Let f (t)=e*Then f!(t)=a.e*and f (0)=1
Now L{ f1(t)} = s.L{ f(©)} — f(0)
i.e.,L{aest } = s.L{eat } — 1
i.e.,L{eat } —s. L{eat } = —1
i.e.,(a—s)L{ert } = -1
al{eat}=_"1_

(ii). Let f(t) = cossa;l then f1(t) = —asinat and f11(t) = —a?cosat
= L{ ()} = s2L{ f(©)} — 5. f(0)—f1(0)
Now f (0) =cos0=land f!(0)=-asin0=0
Then L{—a? cos at} = s2L{cosat} —s.1—0
= —a2L{cos at} — s2L{cos at} = —s

= —(s2 4+ a?)L{cosat} = —s = L{cosat} = _°

s?+a?
(iii). Let f (t) =tsinatthen f'(t) =sinat +at cosat
fi(t) =acosat +a[cosat —atsinat] = 2acosat —a’tsinat
Also f(0) = 0 and f1(0) =0
Now L{ f11(1)} = s2L{ f(©)} — sf(0)—=f(0)
i.e.,L{2a cosat — a’t sin at} = s2L{tsinat} — 0— 0

i.e.,2a L{cos at} — a?L{t sin at} — s2L{tsinat} = 0

—2as 2as

i.e.,—(s2 + a?)L{tsinat} = = L{tsinat} =

s24q2 (s2+a?)2

Laplace Transform of Integrals:

If L{F(O)} = £(s) then L { ft F(x) dx} = fﬂ
0

N

Proof: | g(t) :J.Ot f (x)dx

Then g'(t) = ‘%[ j;f(x) dx] = f(t) and g(0) = 0

Taking Laplace Transform on both sides

L{g*(©)} = L{f(©)}

But L{g'(H)} = sL{g(0)} — g(0) = sL{g(t)} — 0 [Since g(0) = 0]
~ L{g*(O} = L{f(©)}

= sL{g(®)} = LIF©O)} = Lg®} = L{f(©)

But g(t) = [ f(x) dx
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AL{ tf)dx} ="
J, —

S

Solved Problems:

1.

Sol:

2.

Sol:

3.

Sol:

Find the L.T of J.tsin atdt
L{sin at} = =f(s)

s+a

Using the theorem of Laplace transform of the integral, we have

L{ftf(x) dx} = £

s L sinat} =
0 s(s2+a?)
SInt
Find the L.T of I
0t

. 1 . .
L{Sll’l t} =_  alsot nt= 1 exists
s24+1 t
t—-0

~ L {Lrst} = [ L{sint}ds = foo

s s241

N

_ [Tan—ls]j =Tan"o-Tan"s=" ,—Tan"s = cot s (or)Tan"* ( L B

i.e., L {M} = Tan—l(l/s)(or)cot—ls
t

L {JtSiLf dt} =1 Tan-1(1/ ) (or)!cot1s

0 ¢ s S s
Find L.T of et tﬂdt
0 ¢

L [ef JtSi_ntdt]
0 ¢t
We know that

L {sint} = _L_ = £(s)
L ity = © f(s)ds= Y ods
. L J 51
=(tan~1s)2

Vs
=tan~loo — tan~1s =_ — tan~1s = cot~1s
2
sint

~ L {_} = cot~1s

t smt

Hence L{j __dt} = ' cot-1s
0

t N

By First Shifting Theorem

56

L[e




tsine de] =fi(s +1) = ()
ly

s s—s+1
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t .
sint

~Llet[_ dt]= cot~1(s + 1)

t s+1

Laplace transform of Periodic functions:
If f (t) is a periodic function with period ‘a’. i.e, f(t+a)=f(t) then

L{rm))= 1 e ()
1-e™Jo

Eg: sin x is a periodic function with period 2n

i.e., sinx :sin(Zn + x) :sin(47c + x) .............

Solved Problems:

1. A function f (t) is periodic in (0,2b) and is defined as f (t) =1if 0<t<b

=-1lif b<t<2b
Find its Laplace Transform.
sol:  L{f(t)}= b ey (t)dt

1_e—2bs 0
1 [ Pe¥f(t)di+ Zbe‘s‘f(t)dt-|

—p2bs |_.fo Ib _|
1 |' ba-stgt — 2 e*“dﬂ

1-e? LL J b |
1 |_( et ) (e \ZDT

I I P
l_e_zbs \Jk s )lo K_S )bJ

1

= b (e o1)s (e —e®)]
s(l—e‘zm)L J

L{t () =—"

1-2e % 4 g2 ]
s(1-a2s)

N n
2. Find the L.T of the function f (1) =sinetif 0<t<
()]

—0if T i< 2n where f (t)has period 2n
o o o
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Sol:  Since f (t) is a periodic function with period 2z

L{r@m)Y= 1 ettt ’

1-e ™70
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L{f(t)}= 1_9152% I:r“ie*‘f (t)dt

r1 ""e*“sinoatdtJr Zﬂwe—st Odtw
- &

1 [e%(-ssinot—ocosmt) ]

: |

l_e—ZS OJ L S +M® Jo

at e at

b

L e sinbt = 2 (asinbt —bcosht)

_ 1 [ 1 (e'm#.coﬂn)1

_oms

|
1-e w|L52+032 |J

Laplace Transform of Some special functions:
1. The Unit step function or Heaviside’s Unit functions:
0 t<a

It is defined as u(t —a) = {1 fe g

Laplace Transform of unit step function:

e—(lS

To prove that L{u(t — a)} =

S

0 t<a

Proof: Unit step function is defined as u(t — a) = {
1t>a

Then L{u(t —a)} = foo estu(t — a) dt

0

= jo eu(t—a)dt+ ja eu(t—a)dt

= IO e—St.Odt+J‘a e~%.1dt

_ ,[OO eStdt = ||_£5t—||ao - _E_[e—oo _e—as:l _e®

T s

e—as

s L{u(t—a)} =

S

Laplace Transforms of Dirac Delta Function:
1/E 0<t<e

The Dirac delta function or Unit impulse functionfe(t) = { 0
t >€

1—e5€
2. Prove that L{f<(£)} = ——— hence show that L{5(t)} = 1
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1
Proof: By the definition f _(t) = { /e

0<t<e

o0 t >€
And Hence L{f (t)} = = e=stf (t)dt

€

0

€

; e—stf %t) dt + foo estf (t)dt

€ €
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= [Ce=st'dt+ Te-st0dt
R

1 e—st € 1

:E[—s]o:_/ESE _e]: SE

“ L (D) = e

NS

—SE 0 1—e—SE

Now L{6(t)} =& L{f ()} = Ut 1-e—€

€-0 € €e-0 e

~ L{6(t)} = 1 using L-Hospital rule.

Properties of Dirac Delta Function:

1 [s@®dt=0

2. fom 6(t)G(t) dt = G(0) where G(t) is some continuous function.

3. fom 6(t — a)G(t) dt = G(a) where G(t) is some continuous function.

4. [G(1)3" (t-a) =-G'(a)

Solved Problems:
1. Prove that L{§(t —a)} = e~as
Sol: By Translation theorem

L{S(t — a)} = e~=sL{5(t)}

=e 2  [since L{5(t)} = 1]

2. Evaluate [“ cos2t8(t —T/ ) dt
0 3

Sol: By using property (3) then we get
f,” 8(t — a)G(®)dt = G(a)
Herea =T /3,G(t) = cos 2t
~.G(a) =G(Tc J) =cos 2™ 4 = —12‘
« [P cos2at 5t ="/ Ydt = cos2™/ =TT
0 3 3 2

0

3. Evaluate j' e8! (t-2)dt

0

Sol: By the 4" Property then we get
[5(t-a)G (t)dt =-G'(a)
0

G(t)=e*"anda=2

GH(t)=—de™
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~.G'(a)=G*(2)=-4.e?

.-.je—‘“éil (t-2)dt =-G'(a) =4e?®
0

Inverse Laplace Transforms:

If f_(s) is the Laplace transforms of a function of f (t) i.e. L{f(t)} = f(s) then f (t)

is called the inverse Laplace transform of ?(s) and is written as f(t) = L—l{]_f(s)}

~ L~1is called the inverse L.T operator.

Table of Laplace Transforms and Inverse Laplace Transforms

S:No. L{if®} = f(s) LYf($)} =f®
L L{1} =1/ Lt/ =1
2 L{ea} = L1l/s—a} = e
s—a
T
3 L{e-at} = LM s 4 a} = e
s+a
4. L{t}= ~ nisa+ veinteger L1{ }= R
STL+1 Sn+1 nl
5. L =1 B
n—11 — _1rl _ —
L{tn-1} < L/} = -1 1,2,3...
6 : a —F—_ T
- L{sinat} = L-1{ }= .sinat
s? + a? s24+az  a
7. L{cos at} = > L-1{ } = cosat
sz + a? sz +a?
8. L{sinhat} = “ L1{ }= ~ sinhat
sz —a? s2 — q2? a
9. L{coshat} = L-1{ } = coshat
sz — g2 s2 — g2
— — S S
10. L{eat sin bt} = L-1{ } =_1 . eat sin bt
(s—a)?+ b2 (s—a)*+b2" b
11. L{eat cos bt} = T ~ G=—a |, _
(s — a)? + b? Ll{(s_a)2+b2}—efcosbt
12. L{eat sinh bt} = - _1! at gj
{ } (s— @) — b Ll{(s_a)z_bz}—b.efsmhbt
13. L{eat cosh bt} = - ~ G—a , .
(s — a)? — b? Ll{(s_a)z_bz}—efcoshbt
14. L{e—at sin bt} = I 1 ;
L1 = .ea bt
(s+ a)2+ b2 {(S+a)2+b2} p &S
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15. Lie—at bt} = "t —1 s+ C N pa

{e—at cos bt} ST R L {(s T T bz} = e-at cos bt
16. L{ew f(©)} = (5 — a) L{f(s — @)} = el {f ()}
1. L{e-« f(©)} = f(s + a) L{f(s + @)} = e~ f(t)e~«L-'{f(s)}

Solved Problems :

1. Find the Inverse Laplace Transform of e

3_

T = - 1{1/ =31/ +% 3
53 s2

- {T} et { ! L}“l{“sr}

Sol: L-1{

2
:1_3t+4_t_=1—3t+2t2
2!

2. Find the Inverse Laplace Transform of __s+2
s2—4s+13

Sol: L1 {i} =L71{ Y=Ll s—2+4 }

s2—4s+13 (s—2)%2+9 (s—2)2+32
=L-1{—s2 )44, L1
(s—2)%+32 (s—2)2+32
4 , .
=% cos3t + _e?sin 3t
3
. 2s—5
3. Find the Inverse Laplace Transform of — 2
S —_
Sol: [ e T S e
s2—4 s2—4  s2-4

=2[-1{—*}—-5L { 11}
s2—4 s2—
= 2.cosh 2t —
5. sinh 2t
2

1
4. Find L™ {(S+1)}

Sol: Lty - 1{—+ .
s(s+1)

=L1{3+L (B=e +1
s+1 N

. -1 . 3s-8
5. Find L ~{,,,,5}
64
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Sol: L-1{3s=8}=] {3 _1}—-8L { }

452425 452425 452425

:3L_1 s }_SL_l{ 1 }

S O
3 5, 82_.5
=—.c0s—t——.=sin =t
4 2 45 2
3 5 4. 5
= _cos_t— _sin_t
4 2 5 2
6. Find the Inverse Laplace Transform of >
(s+a)
Sol: LY=L 1" zera-1¢7%
(s+a)? (s+a)? sz
— e—atL—l {l_i}
s s2

= e L7} —a Ll { )]
=¢? [1-at]

} _ 3s+7
7. Find LN

3s+7 A B
s -25-3 _s+1+s—3

Sol: Let

A(s—3)+B(s+1)=3s+7
puts =3,4B=16>B =4
puts=—-1,—4A=4=A4A=-1

o 3s+7 -1 4
N +
§¢—-25-3 s+1 s-3

T A T BT T L T Sy

s2—2s—3 s+1 s-—3 s+1 s—3

=—et4+4e¥

8. FindL-1{___*
(s+1)2(s2+1)
Sol: s A B Cs+D

(s+1)2(s2+1) s+1  (s+1)2  s2+1

A+ D(s2+ 1) +B(s2+ 1)+ (Cs+D)(s+1)2=s
Equating Co-efficient of $°, o .o (1)




Equating Co-efficient of s2, A+B+2C+D=0.......

Equating Co-efficient of s, A+C+2D=1.......
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puts:—l,28=—1:>B=—E

2
1
2

Substituting the values of B and D in (2)

e A-'4+20+ =02 44+20=0,als0A+C=02>A4=0,C =0
2 2

s _ 2 3
(s+17 (s2+1) (s+1f S 1

Substituting (1) in (3) 2D=1=D=

3

f—sy=1p, ( 3-L1{ "

(s+1)2%(s2+1) 2 s24+1 (s+1)2

[sin t—e—tL-1 {1_2}]

= N =

= 2|_Lsint —te*t—U

9.  FindL {aq 3

Sol: Since s* +4a’ = (s? +2a’ )2 —(2as)’
= (s% + 2as + 2a?)(s? — 2as + 2a?)

S As+B

— &) 2
s —2as + 2a
st +4a* s +2as + 2a?

. Let

(As + B)(s2 — 2as + 2a?) + (Cs + D)(s2 + 2as + 2a?) = s

-1 1
Solvingwe get A=0C=0B=__,D=__
4a 4a

s _1 1

L{ }:L_1{¢}+L—1{47a}

s*+4a* s242as+2a? s2—2as+2a?

L S T }

} / : >

4 (s+a)’+a®> 4a (s —a)? +a?
-11

- e sinat+i.£eatsin at

4a a 4a a

1 .
=___sinat (eat —e™ )= iz sin at.2sinh at = izsin atsinh at
432 4a 2a

s2—-3s+4 3(52—2)2
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10.  Findi. L1 {——} i.L-1{ ,s }

Sol:
DA iy W A T UL Gy e e S
s3 s3 s3 s3 s 52 s3
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= L1y —3L-1{1} +4L-1 {1}

2
=1-3t+4"=1—3t+2¢2
2!

3(s2-2)° 3 >-2)° 3 st—4s244
ii. L {(— ) = =- L7 }
3,1 4 4 3—11 4 1 4 1
:2? {s_s3+s5}+2(' {}_I_ {3}+4’ {55}}
3w el s o Cllra_ 2
N ___I
2 21 4l
i | 2[1 2t 6J 4|_t 6t 6]
1. Find L' [0
Sol:
L-1[—S ]=L1] 2s 1—1[ 2s 1—1[L L]
s2 — g2 2(52—a2)] ) (s—a)(s+a)] 2L s—a s+a
_1 [e* +e* | =coshat
2
12 Find ol 4 ]
L(s +1)(s+2) J'
Sol: |_—1|_ 4 1 r 1 I L_lr ot 1=4[‘3‘t—e‘2t]
L(S+1)(3+2)J| L(S”)(SJFZ)J ||_s+1 s+2|J
13, Find o[ 1 ]
<{(s +1)2(s* + 4) j
Sol: 1 __A__ B _Cs+D
(s+1)%(s> +4) s+1 (s+1)? s +4
A:2— :1_ i =3
25 5 25 25
-’-“14[ 1 ]%= 2 Ll%f 1 ];+£L‘14( 1 1}_ 2 Ll%( s 1}_3 L1<( 1 1}
(s+1)%(s>+4) 25 s+l 5  (s+1)2 25 244 25 244
L J L) L J l J L )
_ 2 g (1], Ll 2] 2 cos2t— 3 Lsinot

25 S { Lt 25 25 2
S
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L) L]

= Z_E’t + l_e*t.t - 2_cos 2t — 3_sin 2t
25 5 25 50

Gl 24s-2 ]
|

14 Find Lo o
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2 e_ A B C
Sol: SHs-2 =4 — 42

s(s+3)(s-2) s s+3 s-2

Comparing with s?, s, constants, we get
-1 _4 -2
A=14.B=4C=24

Gl 24s—2 ] _lrl 4 2 ]

O R e I Y R +
[ s(s+3)(s—2) | [3s 15(s+3) 5(s—2) J

_L_1|_1—| |_ 4

e 2 ]

+L7

| 35| L15(s+3)J L5(s—2)J

“hea a2,
315 5
—1r $2+25—4 |
15. Find L |———
L(s2 +9)(s—5)J

2 +2s—4 A +Bs+C

Sol:
2 +9

(2 +9)(s-5) -5

Comparing with s?, s, constants, we get

A=3ld,B=34,C =83y

G 2ios-a4 1 Ll 2425-4 ]

- [(32+9)(s—5)J|:L L(s2 +9)(s—5)J

EDTELE Y ! D R D I <

|34(s-5) | L34(32+9)J| | 34(s? +9) |

LlI 3c033t+ sm 3t—|

]

+L7 +17

34 3
First Shifting Theorem:

If L1 F(9)} = (1) thenl { f(s—a) } =e™ ()

Proof: We have seen that L{e"’“f(t)}— f(s—a) .. {f(s a)} eatf(t)zeatL*l{f_(s)}
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Solved Problems :

1. Find Ll{ﬁ]ﬁ: Lt {T(s + 2)}
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.

Sol: L™ :e‘Z‘L‘l( L]

{(s +2)? +16} {52 +16 J

4
2. Find 2l 3s-2 )

isz—4s+20f
sol: (1l 3s-2 1_jul 3s-2 1_ .(3(-2)+4]

isz—4s+2of TWJ% 1(5—2)2+42J&]

= 3L_ S— 2 +4L_1 1
{(3—2)2+42} {(3—2)2+42}
=3e2t L—l [ S ] +4eZt L—l (

{32+423> {sz+4zf

=3e? cos4t + 4e?t Esin 4t
4

3. FindL—l( s+3 ]

isZ —10s + 29}

Sol: L—l( s+3 T s+3 ] [ s-5+8 |

L
G
isz —103+29J> i(s 5)2 +22 1(8—5)2 +2° TW

S+ Cos 2t +

[
iS +22i i 8§sm2tf
Second shifting theorem:
L L)} = f(then L{e™£()}=G(t), where G(t) = e

5tL

i 0 ift< a}

( [ J
Proof: We have seen that G(t) = fit-a} if t >al
% 0 ift<aF
| J

then L{G(t)}=e*.f(s)

Lt {e*as ?(s)} =G(t)

Solved Problems :




1.

Evaluate (i) L

L

2

b (i) L
J

4(s—4)2

L

4
J
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Jrees)_ o Pl e
Sol: (i) L %_s_-i—_’l_ { H - £52_-1-_1l
L J L J L)
Since L™ (1] =sint = f (t), say
te (ew [fsin@m) Liftsm)
= By second Shifting theorem, we have L s? +1F = 0 Jft<m F
L)L J

or L Jtmlj =sin(t-n)H(t-n)= -sint. H(t-n)
-1 ([1+e )

Hence L { ———}=sint-sint. H (t-n) =sint [1- H (t-1)]
[s"+1 |

Where H (t-n) is the Heaviside unit step function

(ii) SinceLl%L ) 2}: et 51; !

=et=f (), say

[ e ) [e(-3)

Jif t>3]
«. By second Shifting theorem, we have L 14 b= {
[((s-4?%) | 0O if t <3

-1 e—3S 1 a(t—

3 (t — -
or L 1(5_4)”} e “L(t-3)H(t-3)

Where H (t-3) is the Heaviside unit step function
Change of scale property:

(

- ')

|

\__/

IFL{f (t)} = T(s), ThenL*{ T (as)}

,a>0
Proof: We have seen that L{ f (t)} = T(s)

Then f(as)— ( \|la>0
a

L K /)
. ‘1{f(as)} —f(a)a>0
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Solved Problems : (
1. If L—l( S :1tsint,find L1

{ _

8s |

(s? +1)2} 2 {(432 +1)? }

76




S
Sol: We have L™ [ [ Lisint,
{(52 +1)2} 2
Writing as for s,
[ as ) _11t t

125 of . sin
l@s+l) ] 2aa a 2a a

Lfl
Putting a=2, we get
t .t
[ 25 = sin orL*

$(4s,2 +1)Zé 8 2 {(452 +1)2J> 2 2
Inverse Laplace Transform of erithives:

Lfl

Theorem: L {f(5)}=f(t) ,thenl 4 f (5){=(-1) t f(t)where f
B = | T

~ . no dhp
ds

-1

-1
Proof: We have seen that L {[“ f@t) .=(-1)" _dgg ()

N {?” (s)} DM (1)

Solved Problems :

s
Sol:  Let L JIog Sm}: f ()
s=1
L J
s+1
L{ f(t)} = log
%t sa)
L{tf ()} == 'log =
ds s -1
L) =—=+ 1
s+1 s-1
tf(t):L‘l( 11 |
S +1l ( S —1}>
tf (t) =—1.L" _] ! (LW
{s+1} i s—lF
> )
—et+et
2sinht

tf(t)=2sinht="f(t)=

7




S LT [Iog

1
L

s+1] _ 2sinht
F

s—1 t
J
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L[ L+s] 1

Note: L {log s = t

| J
2. Find L {cot‘l(s)}

Sol:  Let L {cotfl(s)} = f(t)

L{ f(t)} =cot™(s)
L{tf(t)} = =t [coti(s) = —

fo-L2! b
<tS2 +1ﬁ

f(t):ﬂ
t

11 1

L1+ s? J 1+5?
=sint

s Lt { cot™(s) } = El sint

Inverse Laplace Transform of integrals:

(= 1t
Theorem: L _f(s)} = f(t) , then L_l{J'T(s)ds}z—
s J ot
(@) -
Proof: we have seenthat L{____ }= J. f (s)ds

LY 5
I R I ()
L Y| f(s)ds} =
LI J

Solved Problems :

1. Find L s+1 |

T(s2 +25+2)2J}

Sol:  Let flg)e — 1

o ¢ (S)_(sz+25+2)2
[oo s+1 ]

Then L~ { } L! J.fw)idsj

:L—l[ s+1 )

79




1[(5 +1)? +1]? T

—e Lt [ s , by First Shifting Theorem

i(s2 +1)2f
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t .t
_— B S .
o _smt _e sint Ll( 1: t sinat

1

2 2 i(sz+a2)zj 2a

Multiplication by power of’s’:

Theorem: L {(s)} = (1) ,andf (Q)then L {s¥(s) } = F1(t)
Proof: we have seen that L{ fl(t)} =sf (s)- (0)

AL} =sf() [+ F0)=0] or
LH{sf(s)} =)

Note: L*{s"f(s)} =f"(t)if f"(0)=0forn=1,23........n-1

Solved Problems ;
1. Find (i) L™

s ](ii)Lfl( s |

{(s+2)2h {(s +3)2}>

;Then
(s +2)?

Lt} =L

Sol: Let F(g) =

[ 1 _e 2t (L] =e%t=1(1),

)
levorf e

Clearly f (0) =0
A e
Thus L =L7 s

i S

=L {s.1(5) }= £
(s +2)? (s+2)?

=_d (te?') =t(-2e%) +e 2. 1= (1- 21)

v, (s )

Note: in the above problem put 2=3, then L =e3'(1-3t)

1(s +3)2J>

Division by S:
Theorem: IfL? {T(s)} = f(t) , Then L™ Jﬂﬁl{r f (u)du
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[t 1 £(s)
Proof: We have seen that L%I f(u)duf=

Lo J
ETOI
LY }:J'f(u)du
e (_(_)
Note: IfL {-£(5) } = £ (¢), then L !} “.f (u) du.du
| °
Solved Problems :

1. Find the inverse Laplace Transform of %
s°(s°+a%)

o1 ]

Sol: Since L™t -1 sinat, we have

L2 +a)] a
7J (:|'.S+a;|)la

'LWJ J_sm atdt

1( —cosat \! 1 1

= cosat—1 1- cosat
“a| g | T oD g (o)
I N |

Then L |L871§2+_azy |J = - (1-cosat)dtdt

1( sinat) 1( sinat)

Sl el
1 ] 1( _sinat))
sy el o

. O,

e

Convolution Definition:
If f (t) and g (t) are two functions defined for t>0 then the convolution of f (t) and g (t) is

t

definedas f (t)*g(t):fO f(u)g(t—u)du

f (t)* g (t)canalsobewrittenas ( f *g)(t)
Properties:
The convolution operation * has the following properties

1. Commutativeie. (f=*g)(t)=(g*f)(t)

2. Associative
83




3. Distributive

LF*(g*n) () =[(f*g)*h](1)

[ f*(g+h)](t)=(f*g)(t)+(f*h)(t)fort>0
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Convolution Theorem: If f (®)and g(t) are functions defined for t >0 then

L@ 90} =L O} L{00)} =T ($)9()

i.e., The L.T of convolution of f(t) and g(t) is equal to the product of the L.T of f(t) and g(t)

Proof: WKT L {¢ I e {I g(t- u)du}dt u
Al
_I _[e‘S‘f g(t-u)dudt e ZI
0 u=0 !

The double integral is considered within the region enclosed by the line
u=0 and u=t

On changing the order of integration, we get

j j e f(u)g(t—u)dtdu
—j e f( {j e~ (g (t- u)dt}d

—feS”f {Iesvg dv}du put t—u=v

= [, e (ug(s)fdu=g(s)[, e (u)du =g(s).f (5)
L{F ()% g ()} =L{f <t>}-L{g<t>} -1 (5)9(5)

Solved Problems :

1. Using the convolution theorem find Lt [ s ]
{(32 + aZ)Z}
Sol: L_J S ]zLJ S 1)
%(82+a2)2j <SZ az SZ_’_aZJ>

—_— S J—
Let f (s) = o7 and g (s) = 2

So that L {T(s)} - L‘l{
Lt {g(s)} = 21 sinat = g(t) — say
i§+¥J a

-.By convolution theorem, we have
T 1

ng cosat = f (t) —say

s? +
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L 2 2 2}z.[cosau. _.sina(t —u)du
s +a) | o a
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t

=>a j[sin(au+ at —au) -sin(au —at +au)]du
0

1 t
2a [sin at —sin(2au - at)]du
1 r 1 T
Etsm atu+ %2 cos(2au — at)J O
_ 1 (tsin at + 1 cos(Zat—at)— 1 cos(—at)T
N
= tsinat+ = cosat— = cosat
2l 2a 22
Lsm at
2a
_ -1 ( s? 1
2. Use convolution theorem to evaluate L 1(32 e +b2)f

L s? 1 L s s )

Sol:

. {(sz +a?)(s? +b2)}: L isz +a3% ' §? +b2J>

Let f (s)_ T ———and g(s)_m

So that L-lﬁ(s)}=L‘1{ 2 > zk: cosat = f (t) > say

ST+

L {46) } = L‘li

. By convolution theorem, we have
[ s s ]

L1y 2 22 z}z'fcosau.cosb(t—u)du

1 _ cosht =
(S+ ;E—cosbt—g(t)—way

ls +a s +b ] |

t
:%I[ cos(au —bu +bt) + cos(au +bu —bt) du
0

1[sin(au—bu+bt) sin(au+bu—bt) ]

:§||_ a-b ’ a+b JO

1 [ sin at —sin bt N sinat +sinbt | _asinat —bsinbt

2|L a-b a+b |J a’? —b?
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3. Use convolution theorem to evaluate L B! 1

<{s(sz+4)2}
sol: ol 11 af1 s
18(52 4)2j 152 (52_1_4)2}
Let f :Lzandg_s =
ot ()= 8) (52+4)2
Sothat L {gs)} Li —t=g(t)—>say
{19} - ol —s 1=t'3i”2t=f(t)—sayr Ll s ) wsinat]
1(52+4)2§ 4 L 1(52 -|-a2)zJ} 94 J

s (s +4) ) ,4

t 2

t
= tzluu sin2udu —%Iu sin 2udu

(
1# 1T

L —C0s2u + sm2u+4—cosZu|

1 A\t
CoS2U+— sm 2u
0

t

D

CI\)|C

& |

0

1
1_6[1 tsin 2t —cos 2t]

4.  Find LJ 1 ]

L(S —2)(s? +1) J
st ol 1 Tl 1]
L(s—2)(32+1)J LS—Z sz+1J

Let f (s) = Lzand g(s) =
s_

s? +1

So that L‘l{f(s)}:L‘l( L 1:eZ‘:f(t)—>say
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(By Convolution theorem)




t t

_ {EZU sin(t-u)du (0r) G[sinu.ez(t‘”) du

t
=g Jsin ue~2du

[ e® [-2sinu —cos u]—|t
7 J

2t|
0

1 i
—e2t! Tt (—23|nt —Cost) - 15‘(_1)}

|5
= %(ezt - 2sint —cost)

5. Find 2l 1|

i(s +1)(s—2) J}

Sol: |_-14(; ];12_2}:[1 Sj%siz]r
L J [ J

- 1 — 1
Letf (s)= mand 9(s)= P

. 1)

Sothat L4 f(s)¢=L"
{10} o]
Lt {Z;(s)} s L‘li (5—415 =e? = g(t) > say

-.By using convolution theorem, we have

o1 0

L T— = e e’ du
(s+1)(s-2)) 5

=e' = f(t) > say

t t [g-3u —|t 1
_ J'ezte_sudu _ eth'e_sudu _ e2t| = |:e2t _e—t]
0 0 L -3 Jo 3
[ 1 ]

Sol: L’li 1_ }:L—lﬁfl. 12}
L J
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So that L { (s)} = L‘l{sjl JQ —t="f(t)-say
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)

ss-a’] a

= lsinh at = g(t) —say

L+ {0} =L

By using convolution theorem, we have

[ 1 )

Lfl{ P }:ju._sinha(t—u)du

s -a)) , a

1 t
=5Y[u sinh(at —au)du

11—y sin(at—au)—|t
=a| a cosh(at —au) - o2 |

L Lo

L=t cosh(at —at) —0— 1 [0—sinh at]—|

_ aL a 1 a’ J
1 .

=Er—_t+_smh at

a|La 22 |J

= %[—at +sinh at]

3. Using Convolution theorem, evaluate L-1{__s
(§+2)(s%2+9)
Sol: L-1{1-.—$ }=1 {__ _S }=L-1{f(s).g (s)}
s+2 5249 s+2 s2+32
F()=L = L{f()} = f(t) = L1 {7} = e 2rmrrmrrmeemncaes (1)
s+2 s+2
g(s)=_s = L{g®)}= g(t) = L1 {7} = coS3t---mmmmmmmeeeemm-
s2+32 52432

By Convolution theorem we have

LY (s). 3 ()} = f(1) x g(®)
Where f(£) * g(t) = [ g)f(t — wdu

L {1.5s } = " e~2t-wcos3udu
s+2 s249 f()

o ot
=e® [* e2ucos3udu
0

-2t

=e
22432

[2cos3u — 3sin3u]t

0
—2t

= ¢ [2cos3t — 2 — 3sin3t]
13
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-2
=1 [e~2t(2cos3t — 3sin3t)] — 2e™
13 13—

Application of L.T to ordinary differential equations:

(Solutions of ordinary DE with constant coefficient):
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1. Stepl: Take the Laplace Transform on both the sides of the DE and then by using the
formula

L{F" ()} = s"LLFO)I—s" F (0) —s"L £ 1(0) =s"2 f 2(0) —ovvveoeeeee. fr10) and apply

given initial conditions. This gives an algebraic equation.

2. Step2: replace f (0), f1(0), f2(0) ,......... f "-1(0) with the given initial conditions.
Where 1(0)= s?(O) - 1(0)

f2(0)=s*f (s) -s f (0)- f1(0), and so on

3. Step3: solve the algebraic equation to get derivatives in terms of s.

4. Step4: take the inverse Laplace transform on both sides this gives f as a function of t

which gives the solution of the given DE

Solved Problems :

1. Solve y* 2yt —y! 2y =0 using Laplace Transformation given that
y(0)=y*(0)=0and y*(0) =6
Sol:  Giventhat y!! +2y? -yl -2y =0
Taking the Laplace transform on both sides, we get
L {y“l(t)}+ 2L {y“(t)}— L {yl}— 2L{y}=0
= 'L {y()}- 5 ¥(0) - 5y'(0) - y(0) + 2{ 5L {y(®)}- sy(0) - y'(0) } -
{sL iy} -y }-2L {y®} =0
= {s*+2s2 ~s=2}L {y(®)} = $2y(0) + sy'(0) + y*(0) + 25y(0) + 2y*(0) - y(0)
=0+0+6+2.0+2.0-0
= {53 + 257 —s—Z}L {yt)} =6

Lyoy= - °
$?42s2-5—-2 (s—1)(s+1)(s+?2)
A, B C
= + n

s—-1 s+1 s+2
= AG+1)(s+2)+B(s-1)(s+2)+C(s—-1)(s+1) =6
= A(S?> +35+2)+B(s> —s—2)+C(s? -1) =6

Comparing both sides s?,s,constants,we have
= A+B+C=0,3A-B=0,2A-2B-C=6
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A+B+C=0
2A-2B-C =6

3A-B=6
3A+B=0

6A=6=> A=1
3A+B=0=B=-3A=B=-3

S A+B+C=0=C=-A-B=-1+3=2

1 3 2
~L = -
{y(t)} s-1 s+1+s+2

y(t)=L’1[ 1 ]—3.L*1( 1 1+2.Lfl( 1 ]=e‘—3e—t+2.e—Zt

PSS S VUP'E B WS

Which is the required solution

2. Solve y!—3y!+2y =4t+e* using Laplace Transformation given that

y(0)=land y*(0)=-1

Sol:  Given that y'* —3y! + 2y = 4t +e*
Taking the Laplace transform on both sides, we get
L{y2 @) -3L {y' )} +2L {y®)} = 4L {t} + L {e*}

4

= s?L{y(t)} - sy(0) - y*(0) =3[ sL{y(t)} - y(0) |+ 2L{y(t)} = -+ é

(7]

= (s° -3s+2)L{y(t)} = Si2+£+s—4

= (2 —3s+2)L{y(t)} = 4512+ st +5% —3s% — 483 +125?
2

s (s—3)

— L{y(t)} — % —7s% +13s% + 4512
2 2

S (s—3)(s —3s5+2)

— L{y(t)} — % —7s% +13s% + 4512
2

s (s=3)(s-1)(s-2)

s* — 758 +13s2 +45-12 As+B C D E
= = + + +
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s?(s—3)(s-1)(s—2)

SZ

s—3
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_ (As+B)(s ~1)(s —2)(s —3) + C(s*)(s ~1)(s —2) + D(s*)(s = 2)(s — 3) + E(s*)(s ~1)(s - 3)
s?(s—3)(s-1)(s—2)
= s —75% +13s? + 45 -12 = (As + B)(s® —6s% +11s —6) +

C(s?)(s? —3s +2) + D(s?)(s® —5s + 6) + E.s?(s? — 4s +3)

Comparing both sides s* s®,we have
A+C+D+E=1.....ccccccrunnn... (D

—6A+B—3C —5D—4E =7 eooevvrcrrrrerrnann. 2)
-1

2
puts=2,-4E=8=E =-2

puts=1,2D=-1=D =

out $=318C=9=C=

N| -

fromeq.(l)A:1—£+£+2 =A=3
2 2

from eq.(2) B= -7+18+ —5—8:3—1: 2
2

3
2
y(t):L‘1(3+2+ 1 1 2 |

s 2 2(5-3) 2(s-1) s—zf

y(t)=3+2t +Ee3t —Eet —2.e%
2 2

2 d
3. Using Laplace Transform Solve d_y+2d_y—3y =sint, giventhat y= Y _ owhen t=0

dt? dt dt

d?y  dy
Sol:  Givenequationis — 2——3y =sint.
dt + dt

2

L{y(t)}+2L {y* (1) }-3L {y (1)} =L {sint}
$2L {y(t)} —sy(0)— y*(0) + 2[sL {y ()}~ y(0)]-3L {y(t)} = -

s? +1

:>(82 +23—3)|— {Y(t)} = 521+1

( 1 |
=>L{y()} :L(Sz +1)(s? +23—3))‘|

1

(s-1)(s+ 3)(5 ’ +1) J
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Now consider
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AL B s? +1

1 —
(s-1)(s+3)(s?+1) s-1 s+3

A(s +3)(s? +1)+ B (s -1)(s? +1) +(Cs + D)(s ~1)(s +3) =1

Comparing both sides s3,we have

puts=18A=1= Azi

8

[N

8 40 10 5

4. Solve d_X+x:sincot,x(0)=2
t

dx .
Sol:  Given equation is EJF X=sinmt

L{ () +L{x(1)} =L {sihot}
=sL {((t) }—X(O)+L {x(t)}:

Q)

2 +m°

Q)]

=s.L {x(t)}—2+L {x(t)}: o

= (s+1)L {x(t)}: 2 2+2

ST+
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[ © L2 |
1(5 +1)(s2+0?) s +1f
—aL J[sj-rrﬂj b gfﬁ-ﬁé@—mﬁ}

| J (By using partial fractions)

=x(t)=L"

® Sm ®
:2et+|_1j(1)2—-r:t_ Fo* #@%L
5+t S St

|
L J .
[0 [0 [0
=2et+ et — cosmt + .ot
, ) ,-_sin
o +1 1+ ® 1+ ®

5. Solve (D? +n?)x =asin(nt +a ) given that x=Dx=0, when t=0
Sol:  Given equation is (D? +n?)x =asin(nt +o )
X" (t)+n’x(t) =asin(nt+a.)
L {x"(t) }+nL {x(t)} = L {asinntcoso +acosntsinc}
= $2L{x(t) }-sx(0) - x* (0) + n’L{x(t) } = acosaL {sinnt}+asinaL{cosnt}

n

= (s2 +n2)L {x(t)} =a.cosa, Sz+—nz+asina. T
n .
=L {x(t)} = a.cosoL erasmcx (32 +n2)2

(By using convolution theorem | —part, partial fraction in Il-part)
=nacoso. t1 1 asina —14 d 1 F
4 . L
IOn.S|nnx. sinn(t-x)dx— 2 ds (s? +n?)

| J

_ 85050 _[t{cos(nt—an)—cos nt}dx+ asing ¢ 1 Ginnt
2n o 2 n
D |—J.t{cosn(t —2x)—cos nt}dx+isincxtsin nt—|

2n L 0 2n J
acosa [ -1 T atsina
= — sinn(t-2x)—xcosnt |, + sinnt
2n ' 2n (t-29) UO 2n
_ acosa ['sin nt tcos nt1+ atsino .
2n L 2n J 2n

10




acoso sinnt _at . .
== — [coso cosnt—sina sinnt]

2n® 2n

10




acosa sinnt _at
= 5 —_cos(o +nt)
2n 2n

6. Solve y11 —4y1 4 3y = e-tusing L.T given thaty (0) =y (0) = 1.
Sol:  Given equation is y't — 4yl 4 3y = et
Applying L.T on both sides we get L(y'!) — 4L(y') + 3L(y) = L(e %)
= {s’LLy] s y (0) - y* (0)} —4{s L[y] -y (0)} + 3L{y} = 1

= (s? +4s +3) L{y} s-1-4= L
s+1

= (s> +4s+3) L{y} =1_ +s +5

= (s? + 4s +3) L{y}: 1 +s+5
s+1
L — 1 + s+5
(s+1)(s24+4s+3)  (s%+4s+3)
y=L ]+ L]
(s+1)(s2+4s+3) (s2+4s+3)
Let us consider
L =17
(s+1)(s%2+4s+3) (s+1)2(s+3)

1 1

(s+ 1)(s2+4s + 3) = (s+ 1)2(s+3)

A B c

s+1  (S+1)2  S+3

- L) A
=1t + +-2
s+1 (S+1)2 S+3

( ) ()
s+1 (S+1)2 S+;

H @ @
2 _4

- )
=L~ [s+1 (S+1)2 S+;

==L+ g
4 s+1 2 (5+1)? 4 513
L_l [ 1 1 —t 1 . 1 s (1)
=— e t,&8 + e
(s + 1)(52 + 4s + 3)] 4 2 4
(s2+4s+3) ((s+2)%-1) m
1
—p—2t7—1[—S__|+L~1 4+ 3e~2t[1
¢ L [(52—1)] [ (52_1)]
-1 [_ s+5 _] = cost+3e-2tsint — — —— (2)
(s%+4s+3)

10




From (1) & (2)

1 1 1 .
Ly =—_et+_tet +_ e 3t+e 2tcost+3e2tsint

4

2

4

10




2
7. Solve 4 * 4+ 9x = cos2t using L.T. given x (0) =1, x (%) = -1.
d2t 2
Sol:  Given x11 4+ 9x = cos2t
L [x!1] + 9[x] = L[cos2t]

= s2L[x] — sx(0) — x1(0) + 9L[x} = _°

s2+4
=2+ 9)Lx] —-s—a=_"
s2+4
(s + OLIAI= — 4 (s +q)
s“+4
Llx]|= s s a

B (s2+4((s%49) + (s249)  (s2+9)

a

X= L[S ]+ L]+ L]

(s2+4((s*+9) (s2+9) (s2+9)
=1L s - ° | + cos3t + “sin3t
5 s2+4  s249 3
=5 A I iL—l[ * ]+ cos3t + “sin3t
5 s2+4 5 s2+9 3
=1¢0s2t — L cos3t + oS3t + L SIN3t wmmmmenmmemmee- - (1)
5 5 3

Given x (g) =-1.

1 i 1 3m 3 3 , 3w
w —1=_cos2(2) —_cos_+cos__+cos_+2sin_

5 2 5 2 2 2 3 2
= -1=-1-04+0-"_
5 3
a=—l41
3 5
a_%
3 5
X = Lcos2t + - cos3t + - sin3t From (1)
5 5 5

8.Solve(D3 —3D2% + 3D — 1)y = t2et Using L.T giveny (0) =1,y! = 0, y11(0) = -2
Sol:  Given y111 — 3y11 4 3yl — y = t2et
Ly = 3Ly + 3L — L] = Lieze]
= {s3L[y] = s2y(0) — sy(0) — y'2(0)} — 3{s2L[y] — sy*(0) — y(0)} +
3{sLly] — y(0)} — L[y] = L[t?']
= (s3—-3s24+3s—1DLy]—-s2—-0+2+0+3(1) —3(1) = (—1)2dd_22L[et]

S
1

2
> (- Dyls2+2=" (")
ds? s—1
—_2
T (s-1)3 (s—1

> (s = DLIY] = 2

10




+s2 =2
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L 2 s2 2
M= oo oo
2
y=L1_ 2 ]+ L -2
(s—1)° (s—1)3 (s—1)3

2 1
=2L-1[ 1L 1+ L—l[s_] — 2L
(s—1)° (-1 (=1

_ _ 1 4 s? 171
=2etL-1[__]+ L' ___ — 2etL-1 [_]
(5)° (s—1)° 53

5 2 2
ZZett_—Zett_+ L1] § ]

5! 2! (s—1)3

2
Consider L-1[_°_]
(s—1)3

WKTL-1[—1 ]=el [Ll]ze t’=e¥’
(s—1)3 s3 20 2

52 d2 et? 1d 1
L1 = = —— (2tet + t2et) = —(2et + 2tet + 2tet + t2et
[G=07 = gz () = g (et + £2et) = 5 ( )

=1 (2et + 4tet + t2et)
2

5 2
y = 2ett —2et" — i(Zef + 4tet + t2et)
5! 20 2
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UNIT — 11
ANALYTIC FUNCTIONS

Introduction: Complex analysis is the branch of mathematical analysis that investigates
functions of complex numbers. It is useful in many branches of mathematics, including
algebraic geometry, number theory, in physics, thermodynamics, and also in engineering fields
such as aerospace, mechanical and electrical engineering. Complex analysis is widely
applicable to two dimensional problems in physics. In this unit we discuss about limit,
differentiation and continuity of complex function and analyticity of a function and also

complex integration.

We are familiar with the concepts of limit, continuity,differentiation and integration
of function of real variable. Similar concepts can be defined with reference to complex
variables also and their study constitutes “Complex analysis”. A basic understanding of

complex variable theory will be useful in diverse branches of science and engineering.
Definitions:

Complex number: A number which is in the form of z = x + iy where x,y € R and i? = -

1 is called complex number. Here x is real part and y is imaginary part of z.
(or)
A complex number z is defined as the ordered pair (x, y) of real numbers. i.e.,z = (x,y)

Set of complex numbers: The complex number set is denoted by C and

C={z/z=x+iy, x,yeR, i2= —1}C
={(xy), xyeR, iz = —1}

Argand plane: We have seen that complex numbers are represented by points (x, y)e R and
conversely. After this representation R2 is called the Argand plane where (x, y) = x + iy. After

this representation the x and y axes are called real and imaginary axes.

Modulus of a complex number:The modulus or absolute value of complex number z is

denoted by |z| and it is defined as its distance from the origin.

ie.lz| = Va2 4 y2

10




%
Z(xy)
f,\”/:/ ¥
o X X
Now x < |x| < VaZ + 2, y < |yl < VxZ+y2
i.e., Rez< |z] i.e,Imgz < |z|

Conjugate of a complex number:The conjugate of a complex numberz = x + iyis

denoted by z and it is defined as the mirror image of z in the real axis.
e, z=x—1y [ie, z=(X-y)]
Properties of conjugate:

o 7=7,V zeC

o 7=z zisreal
e zF=-4+2z

o =71

o 7+7=2Rez = Rez=ztz
2

e z-7=2Imgz = Imgz =22
2i
e 7 _z ,providedz #0

z2 2 2

Properties of modulus:

e |z| = 0i.e., |z| is always non-negative

e |z| =f =|-z| =T#alsoRez < |z|,Imgz < |z]
o 2=l wherez 20
z2 |z2| 2

o |z|I?2=2z2Z
o |z1+ z2| < |z1] + |z2]

o |lzi] = |z2|| £ |z1 — z2| < |z1| + |z2]

10




The Polar form or Exponential form of complex number:

10




Letz = x+iyorz = (x,y) be complex number

P(x,vy)
~ | (r®)

[ >
r

X
cosf = ;=>x=rcost9

nzZ=x+Iiy =rcosf+irsiné
z=71(cosf +isinb)
Z = re® ,which is a complex number in polar form

Here r = |z| and tanf = ~= 6 = tan—1 (3
X X

(7, 0) are called polar coordinates of a point P

e Here 6 is called the argument or amplitude of z and denoted by arg(z) or amp(z)

ie.argz = tan-12

X

e The Specific value of argz, satisfying —m < argz < = is called the principle value of
argz

e For any two complex numbers z1,z2 we have

arg(zi.z2) = argzi + arg z2

Z1 argzi
arg S) =

argz

e |z — zo| = r represents a circle with centre at zo and radius r

Letz = (x,y) and zo = (a,b)

lz—2z0l =V(x —a)2+ (y—b)2 =1
= x—-—a)}+(y—>b)2=r?

o |z—z0o|l=re=z—20=r1re?,0<0 <271

11




-z=zo+re? 0<60<2m
e |z| = r represents a circle with centre at origin and radius r

e |z|l=r< Z=re®,0<0<2nm
Neighbourhood (or) é — Disc around = zo:
Let zoe Cand § >0

Ns(z0) = {zeC|z — zo| < 6} is called the § — neighbourhood of zo
Deleted & — neighbourhood of zo:

Ns*(zo) = Ns(zo) - {zo}

={zeC/0 < |z — 20| < 6}

It is known as deleted 6 — neighbourhood of zo.

Pathwise connected: A non-empty subset ‘S’ of C is said to be pathwise connected or arcwise

connected, if every pair of points in ‘S’ can joined by a polygond arc which is entirely in S

i.e., for each pair of points in‘S’ there exists a path joining than which entirely lies

inside ‘S’.
Domain:A non-empty open connected set in C is said to be a domain.

Function of a complex variable: Let ‘S’ be a non-empty subset of the argandplane C. A
function f: S — C is a rule which assigns a unique value f(z)e C for each z € S, then we write

f(z) = w,ze S and we say that ‘f’ is a complex valued function at complex variable z.

(or)

Let S € C, arule f:S— C is called complex function if for every z € S, there exist a

unique image f(z) e C, we write it as f(z) = w, forze S

11




Range: The set {f(z) /z € S} is called the range of ‘f’
f(z)can be writtenasw = f(z) = u(x,y) + iv(x,y), wherez = x + iy
Here u(x, y), v(x, y) are real valued functions of x, y

Definition of limit of a complex function: Let f(z) be a complex function, a complex number
leC is said to be a limit of a function f(z) as z tends to zo. If for every € > 0 there existsa § >

0 suchthat |f(z) — | < e whenever 0 < |z — zo| < &

Symbolically we write lim f(z) =1

Z—20

Continuity of complex function:A function f(z) is said to be continuous at z = zo

If lim f(z) = f(20)

zZ—20

Derivative of f(z): Let f(z) be a given function defined on a nbd of zo then f(z2) is said to
be differentiable at z if lim [2AA=IE0) gyists and it is denoted by f'(z 3

Az—0 Az

ie.f(z )= lim £(z0+82)—f(z0)
0 Az—0 Az

Taking z — zo = Az

f(z )= lim f@=fe0
0

Az—0 Z—2Z(

Analytic function:A function f(z) is said to be analytic at a point zo, if f(z) is differentiable

at every point z in the € - neighbourhood of zo.

11




i.e., f'(2) exist for all z such that |z — zo| < €, where € > 0 then f(z) is said to be analytic

at zo.

11




Note:f(z) is analytic at zo means

(i) f'(zo0) exists
(i) f'(2)exist at every point z in a neighbourhood of zo.

Definition: Let D be a domain of complex numbers, if f(z) is analytic at every zeD, then

f(2) is said to be analytic in the domain D.

Definition:Iff(z) is analytic at every point z on the complex plane then f(z) is said to be an

entire function.
Properties of analytic function:

e Iff(z)and g(z) are analyticthen f + g,f. g, f_(g #+ 0) are also analytic function.
g

e Analytic function of an analytic function is analytic
e An entire function of an entire function is entire

e Derivative of an analytic function is itself analytic
Cauchy — Riemann (C-R) Equations:
C-R equations are used to test the analyticity of a complex function.

Statement:The necessary and sufficient condition for the derivative of the function

f(2) = u(x,y) + iv(x,y) to exist for all values of z in domain R are

5} . 4 .
i o v, ¥ are continuous functions of x and y in R

ox dy & dy

0x dy' ay ox

These two are called C-R equations.
Note: The converse of above theorem is need not be true.

i.e., even though C-R equations are satisfied by f(z) but f(z) may not be differentiable.

Eg: f(2) = V|xy] satisfies C-R equations at (0,0) but it is not differential at (0,0)

Laplace operator: The Laplace operator is denoted by VZ and defined as

11




92 | 0

V=55 " 5y
L 0% 0%
=V =0 Ty

Result: If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then u and v satisfy laplace

equation.

ieV2u=0and VZv =0

%y

2 2 2
ie 0"+ _pand? " +%" =

0x2  9y? ox2  9y?

andu and v have continuous second order partial derivatives in D.

Harmonic function:The function which satisfy the Laplace equation is called harmonic

function.

i.e., funtion @ is said to be Harmonic if V20 = 0

29 9%
I+ "=0
ax2  0y?

i.e.,

Note:Iff(z) = u(x, y) + iv(x, y) is analytic in a domain D, the u and v satisfy the

Laplacce equation
i.e., V2u = 0 and V2v = 0 and we have continuous second order partial derivatives in D.

Conjugate Harmonic function:Two harmonic funtionsu and v are said to be harmonic

conjugate to each other if

()] u and v satisfy the C-R equations
(i) u and v are real and imaginary parts of analytic function f(z)
ie.f(z) = u+iv

Polar form of C-R equations:Iff(z) = f(re®) = u(r,8) + iv(r,0) and f(z) is derivable

. 10 10
atz =rethendu=_""and =—""

(UN * rd or r o6
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Problems:
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1. Show that f(z) = xy + iy is everywhere continuous but it is not analytic.

Sol. To prove f is continuous it is enough to prove that lim f(z) = f( zo)

Z—Z0
Let zo is any point in the domain

Now lim f(z) =lim xoyo + iyo

Z—2Z( VAIA
Now f(zo) = xoyo + iyo

~ lim f(z) =f(z0)

)
Therefore f is continuous every where
Verification of Analyticity of f(z):
Given f(z) =xy+iy=u+iv

=S Uu=xy,v=y

v
Now du=yodu=x ov=0,_ =1
0x dy ox ay

Clearly2u - %%nq %% o _ @
0x dy dy ox

Here f(z) is not satisfying the C-R equations

Therefore f(z) is not analytic.

2.Show that f(z) = z + 24s not analytic anywhere in the complex plane?
Sol. Givenf(2) = z+2z2 =(x+iy)+2(x—iy)= 3x-1iy

Butf(z) = u+iv

Thereforeu = 3xandv = —y

w=3m=0w=0,"%=_1
0x ay 0x ay

Therefore 9« %gng & = — 9%
0x ady dy Ox

C-R equations are not satisfied.

11




Therefore f(z) is not analytic anywhere.
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3.Prove that (2 + )| Real f(2)|? = 2If (z)|2 where w = f(2) is analytic?

Ix2 ady

Sol: Given f(z) is analytic

f(2) = u+iv

Real part of f(2) = u

|Real f(2)| = |ul = u = |Real f(2)|? = u?

2 2
Now LH.S = (2_ +_ % )|Real f(2)|?
ox2  9y?

2 62
=@+ _)u?
ox%  9y?
o R (1)
dx? ay?
Now 2 (u2) =2ud«
0x dx
2
2 @="1"@]="[u™  a? 7
ax? 0x 0x 0x 0x =2 [(ax) +u6x2
2
2 @="1"@)="[u" w? "
52 3y dy 5 0y=2[(6y) +u,
Substitute equation (2) and (3) in (1)
2 2
ThenLHS=2[u C“+%"  u? ou?

e o)+ () TG
Since f(z) = u + iv is analytic
uis a real part of analytic function f(z)

Therefore u is Harmonic function

0“u %u

i.e., u satisfies Laplace equation=_"+ _ "

Therefore L.H.S ou 2 ou
11




dx2 dy?

=2[(,) +(C )]

(ax dy

Now R.H.S = 2|f.(2)|2

And f(z2) = u+iv= f(z2) = e
Ox Ox
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Since f(z) is analytic = it will satisfy C-R equations

ou =-9v

0x dy 0dy ox

Therefore f:(z) = o _jou
Jx dy

ou ? du ?

=IF@1=VG +G

du? du?
= If@F =GP + Gy

o’ w2
Therefore RH.S = 2 (5) + (5)

Therefore L.H.S=R.H.S

4. Show that ('3_22 + a_zz)loglf'(z)lz 0, where f(z) is an analytic function?
dox ay

Sol: Letz = x+iy,z = x— iy

zZ+z

We knowthatz +z = 2x = x =

Letf = f(xy) = f(z,2)

Now-Y :ﬂ(ﬂ) +0_f(6_y) — ﬂ(l) +i(__") — l(a_— ii)f

dz Ox 0z dy 0z ox 2 dy 2 2 & ady

: . d
Of = Fox Uy _f (I, (L2 +i")f

0z Ox 0z Jdyodz 0Ox 2 dy 2 2 0x dy

O*f :aaf:1(a_ia)_

0z0z Eg 2 0x ady 2 0x ady 4 9x2 ay?
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= (07
ox2  ay? 0207
2 92 92 .
Hence (°_+ ~ )log|f-(2)| = 4 log|f-(2)| [from equation (1)]
ox2  ay? 0207

_g 9 1 2
=4 _— ._ . loglf(2)l
0z0z 2

12




— 9 0% log(f'(2)f @)
0z0z

2
25——[logf'(2) +log f'(2)]

_ 2 f @, 0o,

0zf () 071 (2

=2(0+0) =

5. Show that the function u(x, y) = x3 — 3xy2 is harmonic and find its harmonic

conjugate v(x, y) and the analytic function f(z) = u + iv?
Sol: Given u(x,y) = x3 — 3xy?

ou = 3x2 — 3y? and &&= —6xy

Ox dy
d%u 2y
_ =6xand? = —6x
dx2 dy?

2 2
u L _
0x2  0y?

Therefore u is Harmonic function.

Milne — Thomson’s method:Givenu(x, y) = x3 — 3xy? = M= 3x2 — 3y2 and

0x
Ju
E = —6xy
Let v(x,y) be the harmonic conjugate of u
Let f(z) = u+iv
Differentiate with respect to x
, a dv
f@=_,,%
dx d0x
- v _ ;& (from C-R equations , we havedx = o L
O0x ady E 5 5 E

= (3x2 — 3y?) — i (—6xy)
12




= (3x2 — 3y?) +1i (6xy)
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Now replace x by z and y by O
f'(z) = 322
Integrate on both sides,
f(z)y=2z3+ ¢

=(x+iy)+c

= x3 — iy3 + 3x2(iy) — 3xy%2 + ¢
f(z) =3 =3xy?)) +i(Bx2y —=¥3) + ¢
f(z)=u+iv
Therefore u = x3 — 3xy2 and v = 3x2y — y3
Hence v is the Harmonic conjugate of w.
Constuction of analytic function whose real (or) imaginary part is known:

Let u(x, y) be a harmonic function then there exists a harmonic conjugate v(x, y) and

u(x,y) suchthat f(z) = u + iv is analytic
Problems:

1.Find most general analytic (regular) function whose real part is

u = ex[(x2 —y2) cosy — 2xysin y]
Sol: Let f(z) = u + iv be analytic function

Differentiate with respect to x,

f(z)=au+iow
dx

dx

_ou_; ou (from C-R equations , we have ™ = %7 ou = - av)

Ox ady 5 5 5 E
ou _ i
__=e*[(x2 —y2) cosy — 2xysiny] + ex[2x cos y — 2y sin y]
0x
Ju _ )
__=e*[-2ycosy + (x2 — y2)(—siny) — 2x siny — 2xy cos y]
dy

12




f'(z) = ex[(x2 — y2) cosy — 2xysiny + 2x cosy — 2y sin y]

—ie*[-2ycosy + (y2 — x2)siny — 2xsiny — 2xy cos y]

By Milne’s Thomson method, replace x by z and y by 0
Hence f'(z) = e?[z2 + 27]
Now integrate on both sides,
f(z) =ezz2 + ¢
= extiy(x + iy)? = exe[(x2 — y2) + i2xy]

= ex(cosy + isiny)[(x2 — y2) + i2xy]

= eX[(x%2 — y?) cosy — 2xy sin y| + ieX[(x%2 — y2) siny + 2xy cos Y]

f(z)=u+iv

Where u = ex[(x2 — y2) cosy — 2xysiny] and v = e*[(x2 — y2) siny + 2xy cos y]

Therefore v is harmonic conjugate of u

2.Find the analytic function f(z) = u+ ivifu = a(1 + cos 6)?
Sol: Given u = a(1 + cos6)

Differentiate with respect to 8 and r, we get

—=y,=—asing, = u =0
26 or T

: ) 4 . 10
The Cauchy-Riemann equations in polar coordinates are 9« = - % and v =

o rd or
dv Ju
= ra—rz Y asin 6
Thereforeai; = ; (asin @)
Integrating with respect to r,
v(r,0) = asinB.logr +c(6) ..cccoevvrvvennn. 1)

Differentiating (1) w.r.t. '0’, we get

12

10u

rdo




dc Ju dc
W =gqgcosf.logr+ _=r _=r0= _= —acosf.logr
26 de or de
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Again integrating, we get
c(8) = asin 6 logr + c1, Where c1 is a constant.
Substituting c(6) in equation (1), we get
v(r,0) = asinf.logr +asinflogr + c1 = 2asinflogr + c1
Therefore f(z) = u+ iv =a(1 + cos6 + 2sinf logr) + c1

3.Iff(z) = u + iv is an analytic function of zand if u- v = e*(cos y — sin y) then
find f(z) in terms of z?

Sol: Given u - v = e*(cosy —Siny) .cccoevvrinrerenenns (1)
Differentiate equation (1) partially w.r.to x

0 — % = @x(COSY — SINY) wovvvvvreeeerrssssssssssssriionn (2
dx  Ox

Again differentiate equation (1) partially w.r.to y

» = eX(—cosy —siny) = —e¥(cosy + siny) ...ccooeeunne. (3)
dy Jdy

ou —

Since f(z) is analytic

Therefore it satisfies C-R equations

e aw= a0
0x dy dy 0x
. ou v .
equation (3) = _+ __ = e*(cosy +siny) ... 4
dx ox

equation (2) + equation (4) = M= ex cosy

dx

equation (4) — equation (2) = %~ exsin y
ox

, u | .9 L
Now f'(z)=2"+4i" = excosy+iexsiny
Ox ox

= e* (cosy + isiny) = e¥ely = ex*tiy = ez py integrating we get f(z) = eZ + ¢
COMPLEX INTEGRATION

Introduction: Here we discuss the idea of line integral of a complex valued function f(z) of

a complex variable zin a simple way. It is intresting to note that some definite integrals

12




involving real variables can be evaluated simply using the integral theory of complex variables
and also we discuss Cauchy’s integral theorem and their applications.

Piecewise continuous : real valued function “ £’ is said to be piecewise continuous on [a, b],

if [a, b] can be divided into a finite number of subintervals in which the function is continuous.

Continuous Arc: A set of points (x,y),x = x(t),y = y(t)(a <t < b)where x(t),

y(t)continuous functions of the real variable are‘t’ is called a continuous arc.

Path:A continuous complex valued function 'y’ defined on [a, b] is called a path (or) arc in the

argand plane

Where y(t) = x(t) +iy(t),a<t<bhb

Note:A path is closed if y(a) = y(b)

Simple Path (Zordan Arc):A path is said to be simple if it does not intersect itself
i.e., y(t1) # y(t2) for any t1, t2e(a, b)

Smooth Path:The path y(t) = x(t) + i y(t), te(a, b) is said to be smooth, if x'(t), y'(t)

are continuous and donot vanish simultaneously for any value of ‘t’.

Piecewise smooth:A path y is said to be piecewise smooth if thereexists a partition ‘P’ of[a,
b] thereexists a = t1 < t2 < -+ ... ... <tn-1<tn=>b and y is smooth on each subinterval

[ti-1, ti], 1 < i <n

...........

Note:For a piecewise smooth y'(t) exist at to t1,....... tnalso at tot1 tn the right and left

derivative exist but may not be equal at these points, we define y(t)) =0,1<i<n

Contour: A piecewise smooth curve is called contour. If a contour is closed and does not
intersect itself, it is called a closed contour.

Note: The length of the contour is sum of lengths of the smooth arcs constituting the contour.

Contour integration: Let f(z) be a piecewise continuous function defined on a contour

y@®) = x(t) +iy(t), a<t<b then the integral of f(z) along y(t) is define by

[ f@dz= f” fly(®].¥ (©dt
Y a

This integral is called a contour (or) complex integral
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Note: I%fy f(2)dz ¢£ Re f(z)dz

Line integral: Let f(z) be a function of complex variable defined in a domain D. Let C be
an arc in the domain joining from z = ato z = . Let C be defined by X =

x(t), y=y(@t), a<t<bhb
Where a = x(a) + iy(a)and 8 = x(b) + iy(b).

Let x(t), y(t) be having continuous first order derivatives in [a, b]. We define

b

$ f(2)dz = [ flx(t) + iy(®O][x(®) + iy(D)]dt

a

Problems:

1. Evaluate [(2y+ x2)dx+ (3x—y)dy along the parabola x =2t y=1t?+3
joining (0, 3) and (2, 4).

Sol: Atx=0,y=3,t=0andatx =2,y=4t=1

Substituting for x and y in terms of t, we get

1

1
I = [[2(t2 + 3) + 4t2] 2dt + [[6t — t2 — 3]2tdt
=0 t=0

1

= [(24t2 — 213 — 6t + 12)dt
0

3 4 2 1 1
=[R20 8 412 =8+12—-_3= 3%
3 4 2 0 2 2

2. Evaluate $(x + y)dx + x2ydy along y = 3x between (0,0) and (3,a)?
Sol: Let I denote the given integral
Since y = 3x = dy = 3dx

Substituting for y and dy in terms of x, we have

3 3

I = [(x + 3x)dx + x2(3x)(3dx) = [(4x + 9x3)dx = (4. -+ 9. 4)
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9
=2(9) +7 (8D

729 801
=184+ — =——
4 4

3. Evaluate f01+i(x2 — iy)dz along the paths (i)y = x (ii)y = x2

Sol: (i) Along OB whose equationis y = x = dy = dx and x varies from 0 to 1

Therefore f01+i(x2 —iy)dz = f(l'l)(x2 — iy)(dx + idy)

(0,0)

1
Therefore [, . (x? — iy)dz = fx=0(x2 — ix)(dx + idx)

1 3 21

X X

=1+ (2 —ix)de=(1+1) [—i]
0 0

= () [ -]

(ii)Along the parabola whose equation is y = x2 = dy = 2xdx

Now f1+i(x2 —iy)dz = f(l'l)(x2 — iy)(dx + idy)
0 (0,0)
1
Therefore [, (x? — iy)dz = fxzo(x2 — ix?)(dx + i2xdx)

1
=1 -1 [ x2(1 +2ix)dx

X=0

1
=1 -0 [(x?+ 2ix3)dx

X=0

:(1—i)[x3-|-ix_4]1:(1—i)[1+i]

3 2 0 3 2

4. Evaluate f12_+i(2x + 1 + iy)dz along the straight line joining (1, —i) and (2,i)?

i
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Sol: We have z = x + iy = dz = dx + idy
Equation of the line joining the two points (1,—1) and (2,1) is

1-(-D
ytl=——7-G=-1

13




ie,y+1=2(x+1)ory=2x—-3
Thereforez = x+iy=x+i(2x —3) = (14 2i)x —3i
= dz = (1 + 2i)dx

Also x varies from 1to 2.

Hence ["'(2x + 1+ iy)dz = [*[2x + 1+ i(2x — 3)](1 + 20)dx

1

2

= (1+2)[[2(1 4 Dx + (1 — 3i)dx]
1

= (1+ 20)[(1 + D)% + (1 — 30)x]2
= (1+2)[(1+ D4+ (1 —30)2— (1+0) — (1—30)]
= (1+20)(4) = 4 +8i

The Cauchy-Goursat Theorem:If a function f(z) is analytic at all points interior to and on

a simple closed curve C, then ¢ f(z)dz = 0.
This is called Cauchy-Goursat theorem.
Cauchy’s (Integral) Theorem: Let f(2) = u(x,y) + iv(x,y) be analytic on and within a

simple closed contour ¢ and let f'(z) be continuous there. Then

¢ f(2)dz = 0.

Proof:We have f(z) = u(x,y) + iv(x,y) and z = x + iy = dz = dx + idy
Therefore f(z)dz = (u + iv)(dx + idy) = (udx — vdy) + i(vdx + udy)
Hence ¢ f(z)dz = $(udx — vdy) + i $(vdx + udy)

Jv Jdu Ju 0Jv

= ffR (=5 a;}dxdy + iffR [ a;}dxdy ......... (1)

. , . . . . . du 0 0 .
Since f'(z) is continuous, the four partial derivatives 2=, ™, " and °”_are also continuous

dx Jdy O0x ay

in the region R enclosed by C. Hence we can apply Green’s theorem.

Using Green’s theorem in plane, assuming that R is the region bounded by C.
13




It is given that f(z) = u + iv is analytic on and within c.

ov 0 d
Hence v = 2% 7 = %% )

0x dy Jdy Jx

Therefore Using (2) in (1), we have

$f(z)dz=[[ 0dxdy+iff 0dxdy =0
R R

Hence the theorem follows.

Simple connected domain: A domain D is said to be simply connected if every simple
closed curve that is in D can be shrink to a point without leaving the domain.

(or)
A simply connected domain is a domain without holes
Note: Every disc is simple connected domain
Eg: A = {zeC/|z| < 1}, Disc with centre(0,0) and radius r = 1

Multiply connected domain: A domain D is said to be multiply connected if it is not simply

connected.
(or)
A multiply connected domain is a domain with holes.
Eg: The region between two concentric circles is a multiply connected

T={zeC/1 < |z]| < 2}

Cauchy-Goursat Theorem For A Multiply Connected Region:

Statement: Let ¢ denote a closed contour and ¢y, ¢z, c3, ... ... ... ck be a finite number of closed

contours interior to ¢ such that the interiors of the ¢;s do not have any points in common.

Let R be the region consisting of points on and within ¢ except the interior points of

c;. If B denotes the positively oriented boundary of the region R, then
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fB f(z)dz = 0, where f(z) is analytic in the region R.

Result: The above theorem can also be stated as

If <c’ is a simple closed contour and c1, cz, c3, ... ... ... cn are closed contours within ¢

and if f(z) is analytic within ¢ but on and outside the c/s then

[ f@Ddz=[ f(2)dz+ [ f(2)dz+ - e e ceo ... | f(D)dz

c c1 c2 Cn

Where the integrals are all taken in the anticlockwise sense around the curves.

Result:Let ‘c’ be a simple closed curve. Let f(z) be analytic on and within ‘c’ everywhere

exceptatz =a

J f@dz= [ f(2)dz

c c1
Cauchy’s Integral Formula:

Statement: Let f(z) be an analytic function everywhere on and within a closed contour c.

If z = a is any point within c, then

flay= 1 [ /9 4z

2mi ¢ (z—a)

Where the integral is taken in the positive sense around c.

Proof:Let f(z) be analytic within a closed contour. Let z = a be within c¢. Choose a suitably

small positive number ro and describe a circle co with centre at a and radius ro so that this

circle ¢o Is entirely within c.Then £z is analytic within ¢ except at z = a.

z—a

Therefore /(@ is analytic in the region between cand ¢ ;

zZ—a







Therefore by generalization to cauchy’sthorem, we get

F@)
lo=a=!

c co

f(@

= dz

[f(@) — f(D] + f(@)
dz

zZ—a

= J

co

dz f(2) — f(a)
+/J dz

=f(a)

Where the integrals around co are all taken in the positive sense,

on co: z— a = roe and dz = iroei®do.

5 o 0l
Hence, | “ = 2x " d0 =i 20df = 27i oo oo (2)

o za fe:o roet® fo
For every positive ro.
Also f(z) is continuous at a. Hence, to each € > 0, there corresponds a positive § such that
|f(2) — f(a)| < € whenever |z —a| < 4.
Let us take ry= 6. Then ¢g is |z — zg| = 6.

Hence, |f f@)—-f(@) dz| Sf If@)—f(@)| ldz| < ggf |dz|
co z—a co |z—al| co
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€
< 5 (2r8) {J |dz| = perimeter of the circle co)

co
< 2me

Hence, the second integral on the R.H.S of (1) can be made arbitrarily small by taking

ro sufficiently small. Thus,
| C;EigdeZZZnif(a)+-f @ /@ a

[
c 0

L.H.S and the first term on the R.H.S are independent of 7o and the second integral on the
R.H.S can be made arbitrarily small. Further the second integral must also be independent of

To.
Hence, it must be 0. Thus,

f(@)
f&—@

c

dz = 2ni f(a)

e, (@=_[ J? dgz.

2mi ¢ (z—a)

Hence the theorem follows.
Generalization Of Cauchy’s Integral Formula:

Statement: If f(z) is analytic on and within a simple closed curve ¢ and if a is any point

within ¢, then

r=""y SO g4

2mi . (z — a)"!

Morera’s Theorem:

If a function f is continuous throughout a simply connected domain D and if

J. f(z)dz = 0 for every closed contour cin D, the f(z) is analytic in D.

Problems:
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1.Evaluate [
[

z2—z+1 1 ; ; i
dz where C: |z| = "_taken in anticlockwise sense.
z—1 2

84




2_
Sol: Let f(z) = “—*!

z—1

Since z = 1 is outside c, f(z) is analytic inside c.

By Cauchy’s theorem, [ f(z)dz = 0.

2.Prove that [ Ldz = 2mi,whereCis|z—a| = .

C z—a

Sol: Let A be the fixed complex number ‘a’ and P a variable point z on the circle.
Then AP = z — a. Let AP make an angle 8 with x-axis. Then AP = rei®,

Therefore z — a = rei

This is the parametric equation to the circle C and @ varies from 0 to 27, r being

constant.

Y Z plane

d .
Hence [ © = 2mrieit 4o

c za f() reif

2m
=, ido

Cl

= 2mi.
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3.Consider the region 1 < |z| < 2. If B is the positively oriented boundary of this region
then show that [ v~

B z2(z2+16)

Sol: Given f(z) = _
z2(z2+16)
|z| = 1 and |z| = 2are two circles with centre at (0,0) and radii equal to 1and 2

respectively

v
2
- = s -1
= ~
- ~
’ N
‘ i \\
2 o
’ ; 3 3
[} ! . 3
t T
-2 3 -1 o 1 y 2 X
N P ]
\ = e
/
\ -1 5
N ’
N -
s —
-2

The singular points of f(z) are obtained by equating z2(z2 + 16) = 0
=z=0(or)z2+16=0
=z =0 (or)z = +4i
z = 0,4i, —4iare called singular points, which are outside of the region.
By Cauchy’s integral therorem,

f dz = 0.

B z2(z2+16)

4.1f B is the positively oriented boundary of the region between the circle |z| = 4 and

the square with sides along the lines x = +1 and y = *1, then evaluate f ) dz?
B -
sm(i)
Sol: Let f(z) = “*?
sin(g)

The given region is between |z| = 4 and the square = +1 and y = +1,
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|z| = 4is the circle with centre (0,0) and r = 4
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The singular points of f(z) are given by sin () = 0
2

= % = nm, nis an integer
2

i.e.,z =2nm

z =0,1+2m, +4m, ... et v o

Which are called singular points.

Here z = 0 lies inside of the square and all remaining points lies outside of the circle.
Therefore f(z) is analytic within B.

By Cauchy’s theorem,

dz
z2(z2 + 16)

J

B

0

2
Zidz where cis (a)|z| = 5 (b)|z| = 2 taken in anticlockwise?

5.Evaluate [
c z-3

Sol: (a)|z| = 5 is the circle with centre at (0,0) and radius 5 units.

Given function is analytic everywhere except at z = 3 and it lies inside C.

244 f(2)
| J=zdz=] =%

c

Where (z) = z2 + 4, a = 3 and c is |z| = 5 taken in anticlockwise sense.

Using Cauchy’s integral formula

S Zf(_z)dz = 2mif (a) = 2mi[z?% + 4]

—a z=a=3

=2mi(9 + 4) = 26mi

(b)|z| = 2is the circle with centre at (0,0) and radius equal to 2. The point z = 3 is outside

this curve.

2
Therefore the function z_**

z—3

is analytic on and within c: |z| = 2.

2
Hence by Cauchy’s theorem [ “*dz = 0
c z-3
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2z 1 1 —
6. Evaluate e dz where c is the circle |z]| = 3.

¢ (z-1)(z-2)

Sol: Given f(z) = ez

1 1 1 : : i
— = —— — ——using partial fractions.
(z=D(z-2) z-2 z-1

2z
Therefore [ _ ©  dz=[  dz—[ ° dz
¢ (z—1)(z—2) c z—2 c z—

The points z = 1,2 lies inside c.

Because e?z is analytic everywhere, according to Cauchy’s integral formula,

eZz 2z

f Z—Zdz_f z—1

c c

dz = [2mie??]z=2 — [2mie??|.=1 = 2mi[e* — e?]

7.Use Cauchy’s integral formula to evaluate [ e dz where C is the circle |z| = 4.
c (ZZ_;’_”Z)Z

Sol_e  _ e
e ()2 (e—mi)?

f(z) = ezis analytic within the circle |z| = 4 and the two singular points z = +mi lies inside
C.

Let_ 1 — L

(224122 (z+mi)2(z—mi)?

A B C D

z+mi (z+mi)?2 z—mi  (z—mi)?

Solving for A4, B, C and D, we get

_ 7 B="t¢="p="1
2m3i 472 2m3i 472
e’? 7 ez
—  __dz = d
fC (z2 + m2)? z 27T3ifc (z + mi) z
1 ez 7 e? 1 ez
- dz — dz — d
47T2fc (z + mi)? z 27T3if (z — mi) z 47T2f (z — mi)? z
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Therefore by Cauchy’s integral formula,

e? 7 . . 1 . ] 7 ) ]
fc =+ )2 dz = ﬁZELf(—m) — ﬁsz (—mi) — ﬁme(m)

1
- W 27Tlf (ﬂ'l)
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222—z-2 . . .
@272 dz where C is the circle |z| = 2.5 using

8.Findf(2) and f(3) if f(a)= [

(4 z—a

Cachy’s integral formula?

2,
Sol: Given f(a) = [ * ¥ dz

¢ z-a
()a = 2lies inside the circle C: |z| = 2.5

Let @(z) =222 —z—2
By Cauchy’s integral formula, @(a) = if @dz

2wi € z—a

= 2mip(a) = [ MdZ = f(a)

zZ—a

= f(a) = 2mi®(a) = 2mi(2a2 —a — 2)
Therefore f(2) = 2mi(8 — 2 — 2) = 8mi

.. . (222—2—2)
(i) Taking a = 3, we get, f(3) = [ dz

c z—3
Now, the point z = 3 lies outside C. Hence the integrand is analytic within and on C.

5 (222—2—2)
Therefore by Cauchy’s theorem, f(3) = [ dz = 0.

c z—3

3,-z
9. Evaluate using Cauchy’s theorem [ “¢ dzwhere Cis|z—1| = 1_
c (z-1)3 2

. 9 1
Sol: Givencurveis |z — 1| = _.
2

This is clearly a circle C with centre at 1 and radius 0.5 units.
The integrand has only one singular point at z = 1 and it lies inside C.

Consider the function f(z) = z3e—~
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This function is analytic at all points

] =
[
| W

x

Hence by Cauchy’s integral formula,

=" _J@ g4

2mi . (z— a)™!

In this, takea = 1 and n = 2.

Then
. _ 2! Z3€_Z
f = zm{, z—1p ¥
2 [ ze”* o
o~ (Z_—1)3dZ =mif (1)

c

2

= 11l {E [z3e~2]}
z=1

d
=mi{" [3z%e~7 — z3e~7]}
dz z=1

= mi[6ze~? — 3z2e~2 — (3z2e~% — z3e~%)]z=1
= mi[z3e~? — 6z%2e~% + 6ze 7|:=1
= mile~1 — 6e~1 + 6e~1] = mie!

sin wz2+cos iz

10. Evaluate [
92

inside C.

2
dz, where c is the circle |z| = 3 using Cauchy’s integral




formula.

c

(z-1)(z-2)
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Sol: f(z) = sinmz2 + cosmz? is analytic within the circle |z| = 3 and the singular points

a = 1,2 lie inside c.

f(2) 1 1 f(@) f(@)

’ = — _ d
il (Z—l)(Z—Z)dZ_f [Z_Z—Z_l]f(z)dz_f 7=29z J 7=2%

c c Cc Cc

= 2mif(2) — 2mif (1) (using Cauchy’s integral formula)
= 2mi[(sin4m + cos 4m) — (sinm + cos )]

= 2mi[1 — (—1)] = 4mi

: 2 2
. sin mz“+cos z .
ie., [ dz = 4mi

¢ (D@2

Assignment questions:

1.Find whether f(z) = =%

24y2

is analytic or not.

2.Show that the real and imaginary parts of the function w = log z satisfy the C-R equations

when z is not zero.
3.Prove that the function f(z) defined by

BA+iD)—y3(1—-10)
f(z)={ x2 + y2 ,(z+#0)
0,(z=0)

Is continuous and the Cauchy-Riemann equations are satisfied at the origin, yet f'(0) does

not exist.

4.Find k such that f(x,y) = x3 + 3kxy? may be harmonic and find its conjugate.

5.Evaluate fc (x — 2y)dx + (y2 — x2) dy where C is the boundary of the first quadrant of

the circle x2 + y2 = 4.

6.Verify Cauchy’s theorem for the function f(z) = 322 + iz — 4 if c is the square with the
verticesat 1+ i,—1 +i.

—sin 3z

Z3 - - «
7.Evaluate [ dz with C: |z| = 2 using Cauchy’s integral formula.
c

(z—3)
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8.Evaluate [
C

@17

8% 37 where C: |z — 1| = ! using Cauchy’s integral formula.
2

95




. : :
9.Using Cauchy’s integral formula, evaluate | ’ dz where C is the ellipse

¢ (z+1)(z—i)?

9x2 + 4y? = 36.
d
10.Evaluate [ _ % where C: |z — i| = 2.
c (z%244)2

11.Evaluate [ _°  dzwhere C:|z—1| = 3.

¢ z(z+1)

2_
12.Evaluate | “ 47 where ¢ is (D) |z| = 1(iD)|z| = 1_taken in anticlockwise sense.
c z—1 2
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UNIT -1V

Singularities and Residues

Introduction: In this unit, we discuss the method of expanding a given function about a point
‘a’ in powers of ‘z — a’, as we proceed, we recognize that this theory enables us in evaluating
certain real & complex integrals easily. Here we discuss Taylor’s series & Laurentseries
expansion of f(z)about point ‘a’.

In this unit we also discuss about Residue Theorem which is useful to evaluate certain
real integrals.
Sequence: A sequence {Zx} is a function from N —C i.e., Zn:N —»C
Series: Let {Z.}%_be a sequence, the n'" partial sum of sequence is called series and it is
denoted by .7, Zn

Power Series: Let {Z»}” be a sequence of complex no’s the series }.* an (z — zo)" is

called a power series of zo.

e The Series ),;_; anz" is a power series about the origin.

o |If a series })%_, ax converges at every point of circle ‘C* & diverges at every point

outside the circle ‘C’, then such a Circle ‘C’ is said to be circle of convergence of the
series ),5,— ak. The Radius R of the Circle *C’ called the radius of convergence of the
series Y_o k.

e The formula to find radius of convergence (R) is 1 =Lt  Sup 11| (or) 1=

R n—0 an R

Lt,_,..Sup|an |'/n,

1. Find the circle of convergence of the series };_; (log z) z»

Sol. We have },;_; (logz)» z = }”  anz®
n=1
on comparing a, = (log z)»
\Dzvﬁpljrglow that 1 = Lt |/n
R n—o0 n
= Ltn->oSup|(log z)nll/n
=
R =

Radius of Convergence =0

i.e., Circle with zero radius.

Hence the circle of convergence is |z| = 0
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(_ 1)11—12211—1

2. Find the circle of convergence of the series }* @D
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O g = CDP

Sol. We have & ~ wn=or @2n+1)!
=Lt Sup|™
R n—oo an
= Ltn-wSup | : | |
(2n+1)(2n)(2Z2r—H!
= Ltn-ow |
(2n+1)(2n)
=0

~. R - oo, Circle with oo radius

~The given series is convergent everywhere in the complex plane.
Taylor’s Theorem:
Let f(z) be analytic at all points within a circle C with center at ‘a’ & radius r. then at each
point z’ within ‘C".

F@D=f@+f@Dz-a)+ 2z-a?+ PGz —ap3+ ... ()
2! 3!

i.e., the series on the right hand side in (1) converges to f(z) whenever |z — a| < r

- The expansion in (1) on the R.H.S is called the Taylor’s series expansion of f(z) in
power of (z — a) (or) Taylor’s series expansion of f(z) about z =a (around z = a)
Maclaurin’s Series:

Taylor’s series expansion about a=0 is called Macluarin’s Series i.e.,

"

F@D=FO)+fO@D+ 22+ Q3+ . (2
2! 3

!
which is called Maclaurin’s Theorem.
Note: Suppose we want Taylor’s Series expansion of f(z) around z = a. Then f(z) must be
analytic at z = a & within circle C: |z — a| = R, where R is as large as possible.

Expansion of some standard functions:

22z o 2z .
1. e?=1+z+" +_ 4+~ +..... =" ‘Vzie, |z| <wx
200 31 4l n=1 p
. Z3 Z5
2. Sinz=z—"_+4+"_— .. ...
31 5l
Z2 Z4
3.cosz=1—"_+"_— ..........
20 4l
4. sinhz =y* 22!
=1 (2n+1)!

Important Note: To obtain Taylor’s series expansion of f(z) around about z = a, then put

z—a = 0. Then

f@)=fw+a)=¢w) (say)

now write the Maclaurin’s series expansion of ¢(w).
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Finally substitutew = z — a, then we get required Taylor’s Series.
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Problems on Tavlor’s Series Expansion of f(z):

1. Expand ez as Taylor’s series about z = 1

Sol: Given f(z) =e?, z=1
letz—1=w=>z=14+w

Now, write Maclaurin’s series for ¢p(w)
. ) ‘(0 "0
e, p(w) = ¢p(0) + ¢'(0)(w) + (l%(w)z + "’%(W)B F o

p(w) =e.ev p'(w) =e.ev ¢"(w) =e.ev
¢(0) =e p'(0)=e p'©=e¢

2
cpw)=et+ew+" e+ ..
2!

pw) =e[l+w+ f+ S
2!
Now replace w by z — 1
pz—1) =e[l+(=z-1+ CD o]

2!
which is the Taylor’s series of f(z) = ez about z = 1.

2. Find Taylors series of f(z) =

RERD aboutz = —i

Sol: We know that Taylor’s Theorem for f(z) is
f@O=f@+f@z-a)+ " “z-a?+ ’%(z — @3+ e (D)

2!

puta = —i
F-0) £
fO=fEO+f(DEHD+T  Grr+ | @D

f@) = = fCD="_

(1+2)?2 2

, _ ) = f(=i) = —-1.2!
f12) = (1+2)3 f=0 (1-0)3
" _ 6 = f"(—{) = 3!
f1(z) = (1+2)* [0 (1—i)*
Sub. All above in (1) then
f@="+""G@+i+ (Z+ D24 i,
2 A=y (1_i)(i+1)(z—2)

3. Expand —=——
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aboutz =1 (or)

Write the Taylor’s series expansion of z

Sol: Given f(z) =

(z+1)(z—2)

&a=1

(z+1)(z-2)
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z =4 4 B (bypartial fractions)
(Z+1)(Z—2) z+1 z—2

z = AE=22+BEZ+) = 7 = A(z — 2) + B(Z + 1)
(z+1)¢z—-2) @+ (-2

onsolvingitA=1/3,B=2/3

z _ 2 1
(z+1)(z-2)  3(z+1)  3(z—2)

2 1
~ f(2) = 3(z+1) + 3(z=2)

Nowletz—1=w=z=1+w

— 2 1
3(w+2)  3(w-1)

=1+ 1 —_ 1+w
3 2 3
2 3
==Y+ - LUl w A w2 wd ]
3 2 4 8 3

(if[“|<1 2w <1;|w<2=2|w<1)
2

F@H =&Y Y 14 =D+ =1+ ]
3 2 4 8 3

i.e., this series is valid in the region |z — 1| < 1
Assignment Questions:

1. Find the Taylor’s series for 2 aphove z = 1. Also find the region of convergence.

Z
z+2

2. Expand logz by Taylor’s Series about z = 1
3. Obtain the expansion of m in a Taylor’s series in power of (Z — 4) and determine
the region of convergence.
1
4. Expand f(z) = about () z=—1 (i) z=1

z2—7z—6

921

Z3 - . . .
. Find the Taylor’s series expansion of f(z) = 22;1about point()z=—i(il)z=1

z4+z

Laurent’s series Expansion: we have seen under Taylors series that if f(z) is analytic at
z = a, we can have a series expansion of f (z) in non-negative powers of (z — a) which is

valid in a region given by |z — a| < R for suitable R.
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Laurent’s theorem gives a procedure to expand a given function in powers of (z — a).
The series expansion may have positive as well as negative powers.

Laurent’s Theorem:
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Let C1and Cz be two circular given by |z" — zo| = r and |z’ — zo| < R respectively
where r < R.
Let f(z) be analytic on C1 and C; throughout the region between the two circles. Let Z

be any point in the ring shaped region between the two circles C1and C,.

then ol S~
¢ ARy \
f)=Y" a (z—-z)"+ X® _ by ,A(z0) 1
/ » \
n=1 n 0 n=1 f r jrEy
(z—zo)" |\ '\ A 'I
N\ / '
which is called Laurent’s series expansion of f(z) about z=zo. k B 4
&, 7
1 f@) , ~ >
where & = 4561—(ZF_ZO),1+1 dz .
1 f() .
and b =509, Gy 42

where integrals are taken around Czand Cz in the anti clockwise direction.

Problems:

1. Find Laurent’s series for f(z) = . !

205 & Find the region of convergence (or) Find

two Laurent’s series expansion in powers of z for f(z) = % & specify the
z4(1-2)

regions in which these expansions are valid.
Sol:  Given f(z) = !

z2(1-2)

The singular points are z=0 and z=1

Nowf(z) = - =1(1-2)"
z2(1-z2) z2
:_12[1+z+22+ .............. Jvalidonlyifz#0&|z| <1
VA
:L2+1+1+z+zz+ ............... svalidonlyif 0 < |z| < 1
z z
=y 2 2if0o<|z| <1
n=0
which is one Laurents series expansion in powers of Z.
1 —
f(2) = =1
z2(1-z)  z%(z-1)
_ -1
- o=21a-)
2r0 DAy Pz
== Y if|z] > 1

=-Yo oz 3if|z] > 1
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=-3° (2= 073 if || > 1

Only principal part analytic part is not there
This is the another Laurent’s series expansion in powers of z.
2. Expand f(z) = !

intheregion (1< |z|<2(i)0<]|z—1| <1

z2-3z+2
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1 1 A B
: = = ="— 4 —
Sol f(Z) 223712 (z-1)(z-2) z-1 z-2
A=-1,B=1
Yy
-1
z—1 z-2
The singular points of f(z) are Z=1,2 ; /1’ 12| 2\ > \/ Annular Region
y. <l<|< N
(i) Consider 1 < |z| < 2 ’ g R
/ y N .
e, 1<z, |zl <2 s I ‘, )
) \ [e] 1 ] 2 X
L<1, <1 1 . | /
/
Z 2 \ 7
f)= 1 _1 . o
z—2 z—1 R———
= 1 —_ 1 1
—2(=)  z(1—)
-1 -1
=1(1-5 -Ila-D
-2 2 z z
_ 1 z 2z 2 2z 3 1 1 12
LA+ +O + )= A+ +O) + )

validonly if |11 <1, 4 <1
z 2

=1y O3 O"if1<]zl<2
-2 n=0 2 n=0 z

This is the Laurent’s series expansion of f(z) about z=0 (or) in powers of Z in the region
1<zl <2
(i) Consider0< |z—1| <1

1 1 Annular Region
We have f(z) = __ + __ @o:::—nm
z—1 z—2
. . . -1 1 2 X
The function f(z) is analytic w

in the ring shaped region 0 < |z — 1| < 1

-1 1
f@)=_—+
z-1 (z—-1)-1

= SL--(z-1))~
=Z‘T11_(1_(z—1)+(z—1)2+ ......... )

=—(1-2)1 -3 (z- 1)
Principal part + Analytic part
This is the Laurent’s series expansion of f(z) about z = 1 (or) in powers of (z — 1) in the
region0<|z—1| <1

3. Expand — 1t (22+1)(22+2) —

107




in positive & negative powers of zif 1 < |z| < V2

Sol.  Given f(2) = ! -_1 1

@11)(22+2)  (22+1)  (22+2)

Givenregionis 1 < |z| < V2

y
108 i : J; ]
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Y’ A

7 A
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e, 1<|z|, |zl <2
P<1,l5l<1
z V2
1 72
o 1 1
LI<t.B<

1

&=y~ @+

_ 1 1
= —— =
21+ 2047

1 1 1 g 1 2 1
22(1+ZZ) _2( +7)
2 4 6
:L[l_i_{_l_L‘F..........]—_1[1—Z-|-Z_Z+ ]
z2 z2 z4 76 2 2 22 23

f@)= 3o (~Dn() o ge (—pm A

n=0 Z n=0 2n+1

! !

Principal part of Laurent’s series Analytic part of Laurent’s series
Assignment Problems:

1. Obtain all the Laurent’s series of the function —7z2=2___ ghout z = —1
(z+1)z(z—-2)

2. Expandﬁ inthe region () 1 < |z] <2 () 0< |z| < 1(c) |z| = 2

z2—62z—1

3. Find the Laurent’s series expansion of the function f(z) = =~ — ~
(z—1)(z—3)(z+2)

n the

region3 <|z+2| <5

Contour Integration
We have studied the functions which are analytic in a given region. But there are
several functions which are not analytic at certain points of its domain. Such exceptional
points are called the ‘singularities’ of the function & a type of a singular point is called a
‘Pole’. Now we study above different types of singularities & finding residues of a function

at a pole. Also we prove Residue theorem which is useful to evaluate certain real integrals.
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Definition:
Zero (or) root of analytic function: It is a value of Z such that f(z) = 0 (or) A point ‘a’is

called a zero of an analytic function f(z) if f(a) = 0.
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Ex: f(z) =z—1, here f(1) = 0 .~ ‘1’ is called zero (or) root of f(z)

Zero of n™ order : Let f(z) be analytic function, if the root ‘a’ of f(z) repeated ‘n’ times
then “a’ is called root (or) zero of the nth order. & we write it as f(z) = (z — a)™¢(z) where
$(z) # 0.

Examples:

1. f(z) = (z— 1)3, f(1) = 0, Hence ‘1 is called zero of 3" order.

2. f(2) =L, then f(c0) = 0, Hence ‘oo’ is called zero of order 1, it is a simple pole.

1—z
3. f(z) = singz, the zeros of f(z) are z=0, +m, +2m, +3m, +4m ... ... .....
4. f(z) = etanz has no zeros (~ ez # 0)
Singular Point: A singular point of a function f(z) is the point at which the function f(z) is
not analytic.
(or)

A point ‘a’ is said to be a singularity of f(z) if f(z) is not analytic at ‘a’
Singularities are classical into two types:

() Isolated Singularity

(i) Non- isolated singularity
Isolated singularity: A point z = a is called an isolated singularity of an analytic function
f(2) if (i) f(z) is not analytic at ‘a’

(ii) f(2) is analytic in the deleted neighborhood of z = a

Exl. f(z) =1

71
Here z = 1 is a singularity of f(z)

Further z = 1 is a isolated singularity of f(z) since f(z) is analytic in the deleted

neighborhood of z = 1.

1
Ex. Zf(Z) = m

Here z = 1, 2 are singularities of f(z)

Further z = 1,2 are isolated singularity of f(z) since f(z) is analytic in the deleted

neighborhood of z = 1,2.

eZ

Ex.3. f(z) =

z2+1

Here z = =i are two isolated singular points of f(z)
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Ex4. f(z) = 2

sinz
The isolated singular points are z = +m, +2m, +3m, 41 ... ... .....

Non-lIsolated Singularity: A Singularity which is not isolated is called a non isolated

singularity.

i.e., Asingularity ‘a’ of f(z) is said to be a non-isolated singularity if every neighborhood of

‘a’ contains a singularity other than‘a’.

Ex. f(z) = L

sin(;)

sin(D)=0=L=d4nr=7=1 n=+1,+2,4+3,+4........

Z zZ nm

The singularities of f(z) arel- n=+1,42,4+3,4+4...........

1
nm

It may be noted that Lt i: 0

n—>00 ni

i.e., z=0 is the limit sequence of singularity.

- Every neighborhood of ‘0* contains a singularity L for sufficiently large ‘n’
nm

~ z=0 is a non- isolated singularity.

Note: If z = ais anisolated singularity of f(z), then f(z) is analytic in deleted

neighborhood say 0 < |z —a| < R,R>0
= f(z) has Laurent’s expansion which is valid in the annulus 0 < |z —a| < R

We know that the Laurent’s series expansion of f(z) is

f2)=Y* a (z—a)"+ X® _by, validin0<|z—a|l<R

n=1 n n=1 (z—a)"

In this expansion }.* a (z — a) is called the analytic part and >, _ b, iscalled the

n=1 n n=1 (z—a)"
Principal part of the expansion.
1. Removable Singularity: If the principle part of the Laurent’s expansion of f(z) around
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the singular point z = acontains no terms. Then singularity is said to be a ‘Removable

Singularity” of f(z).

In this case f(2)= X%, an(z — a)®
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In this case the singularity can be removed by appropriately defining the function f(z) at
z = a in such a way that it becomes analytic at z = 0, such a singularity is called removable

singularity.

Note: If Ltz~af (z) = finite then z = a is a removable singularity.

1-Cos z

Ex.1: If f(z) =

z

Hence z = 0 is isolated singularity of f(z)

- 0
Lt,of (2) = Ltzoo —227 (6 form)

Z

sin z

= Ltz-o0

(L hospitals Rule)

=0 (finite)

~ z = 0 is called removable singularity of f(z)

Sinz

Ex2:If f(z) ==

z=0 is removable singularity

2. Pole: If the principal part of Laurent’s series expansion of f(z) around singular point z =
a. Then z = a is called a pole.
- fbn#0&bk=0fork=m+1,m+2,........
Then z = a is called a ple of order ‘m’
- Apole of order 1 is called a simple pole.

ZZ
(z—1)(z+2)?

Ex: f(z) =
Here, z = 1, —2 are isolated singular points
Hence z = 1 is a simple pole

z = —2is apole of order 2

Essential Singularity: If the principle part of the Laurent’s series expansion of f(z)around
z = a (Singular point) contains infinitely many terms then z = a is called an Essential
singularity of f(z).

Example for Removable singularity, pole, Essential singularity:
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2_ _z(z—2)+3 _ 3
Ex1: f(z) =~ 23 = =z+

z—2 z—2 z—2

Hence z = 2 is a singular point & it is Isolated
f(z)=z+3(z—2)1

which is Laurent’s series expansion of f(z) around z = 2. It contains only one —ve

power of order one.
~ z = 2 is called a simple pole.

Ex 2: f(2) = e'/z=_1_

e V2

The singular point are given by e~ /z= 0

1
= _ =00

VA
=z=0

z = 0 is the Singular point of f(z) & it is Isolated.

Now f(z) = e'/z= 1 +1 +1 (1)2+ L), + e 10 < 2] <00
z 2z 3z
1
=X _(z—0)™"
n=0 p

which is Laurent’s Series expansion of f(z) above z = 0 & It contains infinitely

many —ve powers of (z — 0) (principle part contains Infinite no. of terms)
=~ z = 0 1s called Essential Singularity of f(z).

Singularity at Infinity: Let the function is f(z), to find the singularitites of f(z) at z=co then
1
putz = - in f(2).

Then £(z) = () = F(©) [say]
Now the singularity of F(t) at t = 0 is the singularity of F(z) at z =

Laurent’s Theorem:
Let C1and Czbe two circular given by |z' — a| = r1and |z" — a| < r2 respectively

where 2 < 71.
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Let f(z) be analytic on C1 and C» throughout the region between the two circles. Let Z

be any point in the ring shaped region between the two circles C;and C». then
f(z2)=Y" a (z—a)"+ X* _bn whichiscalled Laurent’s series expansion of f(z)

n=1 n n=1 (z—a)"

about z=a.

e £
where ¢z = L¢ dz' and b = Lﬁqm dz'

2mi ¥ €1 (zF—a)n*! 2mi

where the integrals are taken around Ci and C; in the anti clockwise direction.

Residue at a pole: Let z = a be the pole of a function f(z) then residue of f(z) atz = a is

denoted by Res.=a [f(2)] and it is defined as the coefficient of —L— in the Laurent’s series

expansion i.e., biis the residue

ie.bi= [ f(2)

fc f(Z) =21 X b1=2mi X ReSz=a[f(Z)]

- if z = ais the simple pole of f(2)
then RQSz=a[f(Z)] = Ltz—>a(Z — a)f(z)

- if z = a is the pole of order ‘m’ of f(2)

then Resz—q [f (2)] = ﬁ s [djn—nil (z —a™ f(2)]

Cauchy’s Residue Theorem

Statement:_Let C be any positively oriented simple closed contour. Let f(z) is analytic on &

with in ‘C” except at a finite number of poles z1, z, ... ... zn Within ‘¢’ and Ry, R, ... ... Rn be
the residue of f(2) at these poles, then [ f(z) dz = 2mi [R1 + Rz + ... .. +Rn]
(or)

[ f(2) dz = 2mi[ sum of the residues at the poles with in C]

[

Proof: Let c1, c2, ... ... cn be the circles with center at z1, z2, ... ... Zn respectively
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The raddi so small therefore all circle c1, ¢z,

and They do not overlap.
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Now f(z) is analytic within the region enclosed by the curve ‘¢’ between these circles.

=~ By Cauchy’s theorem for multiply connected regions we have
J. f@dz=[_ f(2)dz+ [, f(Ddz+........+ [, f(2)dz (@))
1 2 2

But by definition we have

L | f(2)dz =Rs [f(2)]

2w c1 Z=z1

L [ f(@dz =Rs [f(2)]

2wl Cn Z=Zn
J. f(2)dz = 2miResz=z,[f(2)] + 2miResz=z,[f(2D)]+ .............. + 2miResz=z, [f(2)]
= 2mi {Resz=z,[f(2)] + ReSz=z,[f(2)] + ..............+ Resz=z [f(2)]}

= 2mi[Ri+R2+ ... +Rn]
= 2mi[ sum of the residues at the poles with in C]
Hence Proved

Problems related to poles & Residues:

eZ
1. Expand f(z) = 7 @52 Laurent’s series about z = 1 & hence find the residue at
that point.
Sol:  Givenf(z)=_"_ g,=1
(z—1)?

It is required to find Laurent’s series expansion around z = 1
(i.e., in powers of ( z — 1))
f(z2) =(z—1)"%e@ D+ = (z — 1)72e=D e
— -2 (2—1)2
ze(-D?1+Z-1D+

2!
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 (z-1)2

= e 4+

(z—1)?

e

e M+E-D+

(z-1)2
2!

A

(z-1)

2!

9
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—[*+ D N P ¢ ]
2! 9 (z-1)  (z-1)?
+ve powers of (z — 1) —ve powers of (z — 1)
Analytical part Principle part
Given f(z) = _°_ ;= 1isapole order 2

(z—1)2’

& Residue of f(z) at z = 1 is coefficient of —L_ in Laurent’s series expansion
(z-1)

i.e., Res:=1[f(z)] = e

2. Find the poles of the function (i) —z— (ii) cot z (iii) —=2

cos z z2-3z+2

Sol. (i) f(z) = _~

Cos z

Poles of f(z) are given by denominator =0
ie,cosz=0

e, =Cn+1)Z,n=0+1,+2.....
2

~ Thepolesarez = +” + 3_”, ....... ,which are poles of order 1( simple poles).

2 2
(i)  f(z) =cotz

f(z) = cotz = C(,)SZ

sinz

Poles are given by sinz = 0

ie,z=notwheren=0+1,+2.......

~ Thepolesare z = 0,+m,+ 2m, .+ 3m.............. , which are poles of order 1( simple poles).
iii =z
(i) fl)= 2z

Poles are given by z2 —3z4+2 =0

z = 1,2 are called poles, which are simple poles.

. . 3 (z-1)*(z-2)(z-3)
3. Find the poles of the function f(z)= z
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and residues at the poles.

3
Sol: Given f(z)= z
(z—1)*(z-2)(z-3)
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The poles of f(z) are givenby (z — 1)*(z—-2)(z—3) =0
=z=1,23
here z = 1 is a pole of order 4,z = 2, 3 are poles of order 1.
i) Residue at pole z = 2
w.k.tIf z = ais apole of order 1 then
Resz=d[f(2)] = Ltz—a(z — @) f(2)
3

_ — J— = Z___Z ? = 8 —_— —
Res:=2[f(2)] = Ltz2(z — 2)f(2)= Lts( )(2_1)4 — =8

i) Residue at pole z = 3
3

_ _ - z—3 4 -27 _27
Res=3[f(2)] = Lts3(z — 3)f(2)= Ltssz(E—3) —

iii) Residue at pole z = 1
Here z=1 is apole of order ‘4’

w.k.tif z = ais pole of order ‘m’ then

then Resz=a [f(2)] = (mil)! Lt, ., [d;fn—nil (z —a)™ f(2)]

herem=4,a=1

d3 3
Res [f@] ="t [T (@-at ° ]
z=1 31 z=1 g3 E—1%(z—2)(z-3)
1 d3 3
Res [f@l=_t [Z_.__ " ] (1)
z=1 6 771 473 (z-2)(z-3)
. 3 73
Let us find out 4_[
dz3 (z—2)(z-3)
_z - Az+ B + ¢ 4 D
(z—2)(z—3) 7—2 z—3
Hence A=1,B=5,C =—-8,D =27
2 - .8 4 27
e Lt
3
ing ¢ 48 162
ZI%y solving ¢ | 1= _ 2
dz3 (z-2)(z-3) (z—2)* (z—3)*

Sub. (2) in (1)
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[f(2)] =1Lk 48 162

Res
z=1 ¢ 21 (z—2)* (z—3)*
=1[48 -
6 16

Res,=1[f(2)] =10
16
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1

4. Find the Residues of f(z) =
z(e?-1)

Sol. Given f(z) = !

z(e?—1)

The poles of f(z) are given by z(ez —1) = 0
z=0o0rer—1=0
eZ2=1Dez=¢2mmi n=0+1,+2.....
z = 2nmi
~ The polesare = 0,2nmi ,n =0,+1,+2.......
Whenn = 0thenz = 0,0

~ z = 0 is apole of order 2

1
f(Z) = = — !
z(e?—=1)  z[F+z+EHF + )—4]
2 3!
_ 1
DXL+ A D ]
1 z 2 -1
= 2—2[1 + (2—+ 3'—|- e e e )
_1 z z* z 7 2
2 [1—(2+3! + o) + (2+3! o )
1=+ -Dz+t+ =D+ ]
z2 2! 4 6 24 6 8

Which is a Laurent’s series Expansion of f(z) in powers of z.

~ Res [f(2)] = Coeffiecient of i= —1

z=0 z 2

Assignment Questions:

Find the poles & the corresponding residues of

0 f2) = _%
(1+2)?2

@ f@) =2

@) flo) = "
(z+1)2(z2+4)

124




4 _ ze*
@) f(2) -

5) f2) =~

(z+1)2(z+2)
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Problems related to evaluation of integrals using residue theorem:

4-3Z

1.Evaluate ¢ dz where ‘C’ is the circle|z| = 3/2 using residue theorem.

Z(Z-1)(Z-2)

Sol: let f(z) =—24=32
Z2(Z-1)(Z-2)

The poles of f(z) are given by z(z—1)(z—2)=0 =2z =0,1,2
z = 0,1,2 are the poles of order 1.

. . 3 3
Thegivencurve cis|z|=2 = |z—-0]=Z
2 2

= |x+iy—0]=3/2

= |(x — 0) + iy|=3/2
= V(x — 0)2 + y2 =3/2
=>x—-0)2+(y—=0)2=15
which is a circle with center (0,0) & r = 1.5

The poles z = 0,1 are only lies inside the curve ‘¢’
We required to find the residues at the poles z = 0,1

Residue of f(z)at z=0:

w.k.t Res f(2)at z=a = Ltz—a(z — a)f(2)

= -0~ _—up=2
R1=Res f(2) 4t =0 = Ltz-0 2a-DZ-2) =2= R1=2

Residue of f(z) at z=1:

R2=Res f(2) g yo1 =Lts1 Z—1) =1/1(-1)=-1 =2 R, = -1

Z(Z-1)(Z-2)

=~ By Cauchy Residue theorem:

4-32
$ ZZ-1)(Z-2)

dz = 2mi(R1 + R2)

=2mi(2—-1)
= 2mi
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Note: [ f(z)dz = 2mi(sum of residues )

127




. . . : d
2. Obtain the Laurent’s Series for the function f(z) = __" & evaluate | _dz__

2 .
z2 sinhz z% sinhz
where ‘C’ is the circle |z — 1| = 2
H 1
Sol : Given f(z) =
z% sinhz
: . J B
= 1 (sincesinhz=z+" +~ +--)
2 BB 31 5l
Z (zhgtg )
= A
Zo I+ C 7
gtg ol
1 22 4 -1
= [+ (5t gt

2 4 2 4
A=+ 4+ )+ +"+)2.0]
z3 31 5l 3! 5!

[since (14+x)1=1—x+x2+x3..]

R G P

z3 6 36 120

f)=1 - 61 + %Zﬁr ... is called L.S exp of f(z) about 0

The highest power of (z-0) is 3
Therefore z = 0 is a pole of circle 3

Thegivencirclecis |z— 1| =2; [x +iy— 1| = 2;

x —1+iyl=2; V(x—1)2+y2=2 at (1,0) r =2
The pole z = 0 lies inside ¢

1
R1 = Res f(2Z)at z=0 = coef ficient of Z—in L.Sexp =-1/6

By residue theorem [ f(z)dz = 2mi(sum of residues )
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dz 1 i

= 2mi(R1) = 2mi (— D=3

/

z% sinhz

I dz . . . .
3. Evaluate fﬁ , where c is the circle |z| = 4 using residue theorem .
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Sol: Given f(z) = !

sinhz

The poles of f(z) are given by sinhz = 0

Z=xnmi,n=0,+1,+2 ...

Z2=0, mi, -mi, 2mi, -27i

Which are the poles of order 1

[(0,0) (0,m), (0,—m), (0,2m), (0, —2m) ....]

The given curve ‘C’ is |z| = 4 which is a circle with center (0,0) & radius r = 4
Here the only poles lies inside the curve “c” are z=0, i, -mi,

Residue at z=0:

R1 = Res f(2)at z=0 = lt z»0(z — 0)f(2)

1

=l z-f “ sinhz

=0 js indeterminant form
0

— 1 :
=1t , — (L-hospital rule )

Residue at z= xi

R2 = Res f(Z)at z=ni = It z—)m’(Z - Tl.'l)f(Z)

— 1, (z—m).(—)

sinhz

— (mi—mi) __

0o . _
simh(ri) 0 (indeterminant form )

_ltZ—>TL'i( 1 )= 1 1

coshz cosh(m’))= -1 =-1
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Similarly Residue at z= -xi

is R3 = —1
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By residue theorem [ f(z)dz = 2mi(sum of residues )

1

sinhz

S

dz=2mi(1-1—-1) = —-2mi

Evaluation of Real Definite Integrals by Contour Integration:

In this section, we consider the evaluation of certain types of real definite integrals. These
integrals often arise in physical problems. To evaluate these integrals, we apply Residue
theorem which is simple than the usual methods of integration. The process of evaluating a
definite integral by making the parts of integration about a suitable contour (curve) in the

complex plane is called contour integration.

Type I: Integrals of the type f02" F(cos0,sinf)do

Procedure: put z = ei®
Differentiate on both sides w.r.t ‘6’

A _ 6 ¢ = df= do ="

de ietd iz
ei9+e—i9 Z‘{‘l
We know that cos8 = — = TZ
. elf—e—if z—"
sinf = — _
2i 2i

Also since 0< 6 < 2m = 6 travels on the entire unit circle & |z| = |e?] = 1
fzn F(cos,sind)do= [ F['(z+), “(z- 1] = [ f(2)dz (say) (1)
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0 c 2

Where C’ is the unit circle |z] = 1

By Residue Theorem :[ f(2)dz = 2nix[sum of the residues |

Z

2
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From (1) & (2)

f02” F(cos0, sinf)d6 = 2nix[sum of the residues |

Problems:
1. Show by the method of residues [, —22— = —Z— (a>b>0
: ow by the method of residues [ b - T (a )
cos6
49 _  2m
cosO
Sol: wecanwrite " 46 =1 2r do (1)

0 a+b cos6 zf() a+b cos6
Let C be the unit circlei.e.,, C: |z| =1
Put z = ei®

Differentiate on both sides

. . dz
dz = jei0 = jz = dO = __
do iz

1
elf4e—if z+ 7241
cosO = = z =
2 2 2z

Substitute all above values in equation (1) than

™ de 1 2m do 1 1 dz
[ -
> ;
0a+bcos@ 2° a+bcosfd 2 c a_l_b[zz-;l]tz
=1y 2 dz (2)
2i ¢ bz?42az+b
Letf(z)= -
bz2+2az+b

The poles of f(z) are given by bzZ + 2az+ b =0

= The poles of f(z) are z — CetveTh

Which are poles of order “1°.

Let @ ==V g = —am VI
b b

134




1
Sincea>h>0 = |B| > 11>~ :>H<1
B

But we know that product of the roots ¢ = =1
a b

i.e., a.p=1
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= |a.Bl =1

1
>la =<1
ol =15
= lal <1
=~ "a’ lies inside the unit circle ‘¢’
Residue of f(z)at z = a:
R1 = Resz=a[f(2)] = Ltz-a(z — a)f(2)
1
= Ltyoa (Z—0) ———
bz24+2az+b
1
= Ltz—a (AN P—
b(z—e)(z—p)
_ 1
b(a—p)
1
= v a—
= (( B
By Residue theorem
1
| f(®dz=] _  =2nix[sum of the residues |
c ¢ bz242az+b
=2mix 1
2V a?+b? —(3)
Sub. (3) in(2)
" - :1f 1 dz=1Xmix2mix 1 _ n
0 a+b cosé : ¢ bz2+2az+b i ) 2Va2+b2 Va2+b?
2. Evaluate x2 dx using Residue theorem.

|-
Sol: To evaluate the given integral, we consider

[ 2  dz=][ f(2)dz

¢ (2241)(z%+4) c

Where C is the contour consisting of the semi-circle Cr of radius R together with the

part of the real axis from - R to R.

Observe that the integrand has simple poles at z = +i,z = +2i.
But z = i,z = 2i are the only two poles lie inside C.

The residue of f(z) at z = i is given by
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lim[(z — )f(2)] = lim [(z — ©)

z—1 z-1
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(z-D(z+ )z

Z

+4)

]




22 R T |

:limm_(ﬁm_ 6i

z—1

The residue of f(z) at z = 2i is given by

2

lim[(z — 20)f(2)] = lim [ z 1
7210 z—2i (Z + ZXZ + 1)

j— —4 —_—
T (—4+D)(40) 3

Thus by Residue theorem,

[ f(2)dz = 2mi(Sum of the residues within C)

Cc

-1 1 1 1 2m m
=2nl(a+§)=2n(§—g)=?—§

i.e., J-R fdx+ [ f(2)dz = ’i(since on real axis z = x) 1)
—R CR 3

Hence by making R — oo, equation (1) becomes

}‘OO f)dx +lim [ f(z)dz=" ()

z—o CR 3

When R - o, |z| = ©

[ f(@dz=0 )

From (2) and (3), we have

| feodx==1
—» 3
© 2
ie., x dx ="
f—w (x2+1)(x2+4) 3
Assignment Questions
)

1. Prove that rsin6ds _ In [a — Va? — b2] wherea>b >0

JO a+b cos@ b2
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2t de  _ _2m_ a>p>0 using Residue theorem.
2. Showthat/, atbcosd  Nai—bZ g

cos 260

2
3. Evaluate f0n5+4— d6 using Residue theorem.

cosf
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2w 144 cos@ =
4. Show that J, mde ’

2
5. Evaluate foﬂ d6 using Residue Theorem.

1
5-3
cosf

Type II: Integrals of the type f:of(x)dx [Integration around semi circle]

[ee]

To solve the integrals of the type ]~ f(x)dx, we consider [__ f(x)dx = J. f(®)dz

Where “C’ is the closed contour.
C = CrU real axis from —R to R [Cr is the semi circle in upper half plane with radius R]

If £(z) has no poles on real axis &on circumference of a circle. But f(z) has some poles

Inside curve ‘C’. Then by Residue theorem

J. f(2)dz =2ni x [sum of the residues at Interior poles]

R
fCR f(z)dz + f_Rf(x)dx = 2mi X [sum of the residues at Interior poles]

Here we show that fc |f(2)|dz—> 0asR — o
R

CR:|z|=R
o0

[ f(x)dx = 2mi x [sum of the residues at Interior poles] R

—00

Note: Radius R is taken so large these are the singularities of f(z) lie within semicircle Cr.
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dx

1. Evaluate fo Ztat)

Sol: Here f(x) =

+a?)

1

Z
(x2+a?)
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f) = = = @)

(~x)2+a2)? e’

=~ f(x) is an even function
» f(x)dx = e fx)dx

0oo 1 dx2 :—;o (o] 1 df (1)
" fO (x2+a2)® 2 f—oo (x2+a?)® 1
Now let | dx=[ f(z)dz where f(z) =
~® (x2+a?) ¢ (z%+a?)

& C is the contour consisting of the semi circle Cr of radius R together with the real
axis from-R to R.

The poles of f(z) are given by (z% + a2)2=0
=z = +ai, tai
The poles are z = ai,z = — ai of order 2

The only pole z = ai lies inside semi circle Cr

Residue of f(z) at z = ai

Since z = ai is a pole of order 2
R=R [f@I=1k [L(-a)f(@)]

i . 1! dz

z=ai z—>ai

=1t [“G-adz ' ]

z—ai dz (Zz_l_az)z
d 1
=Lt [~ (z—ai)? ]
Z=at gz (z+ai)%(z—ai)2

z2al gy (z4ai)?

_ -2
_Ltz—>ai [ (z+ai)3]

R=1
U 443

Hence by Residue Theorem, I f(z)dz = 2mi X [sum of the residues at Interior poles]

= 2mi X

a3i
T

_2a3
[o f@dz+ [Lf(dx = 2 @)
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We know that fC |f(2)|dz > 0asR —
R

Hence, f:of(x)dx = %
Sub. (3)in (1)
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0 (x2+az)2 5
(x2+a?)

1
Note: Evaluate fo e dx using Residue Theorem

Put a=1 in the above problems then we get

f°° 1 4 T
, (A% +a?)? ¥z

Assignment Questions:

1
1. Using the method of contour integration prove that f:m dx = g (or) Evaluate

1
fm oo dx using the Residue theorem.

2. Evaluate by contour Integration 4 x2 dx

| -

(o] 1
3. Evaluate by contour Integration ) dx

0 (x2+1)

g x

0 (2+1)d

4. Evaluate [
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UNIT-V
CONFORMAL MAPPINGS

Introduction : In this unit we deal the special type of mappings w = f(z) , which are called
conformal mapping. These mappings are important in engineering mathematics in solving
various problems in two dimensional potential theory.

Basic Defintions:
Mapping or transformation from Z-plane to W-plane :

The correspondence defined by the equation w = f(z) between the points in the Z-plane and
W-plane is called “Mapping” from Z-plane to the W-plane.

Conformal mapping :

Suppose under the transformation w = f(z), the poinrt P(xo, yo) of the Z-plane is mapped
in to the point P’'(uo, vo) of the W-plane. Suppose C1 and C: are any two curves intersecting
at the point P(xo, yo). Suppose the mapping w = f(z) takes C1 and C: into the curves ¢ ang
¢ which are intersecting at P'(uo, vo) . If the transformation is such that the angles between C1

and C2 at (xo, yo) is equal both in ma%nitude and direction to the angel between
c’1 and ¢ 2at (uo, vo) ,then it is said to be conformal transformation at (xo, yo) .

A

same

angle ™

Definition : A mapping w=f(z) is said to be conformal in a domain D if it is conformal at
every point of D.

Isogonal Transformation :

If the transformation preserves the only magnitude but not necessarily sense (direction) then
it is called isogonal mapping.

Sufficient conditions for w=f(z) to represent a conformal mapping :

Theorem : A map w=f(z) is conformal at a point zo if f(z) is analytic at zo and f'(zo) # 0.
Critical point : the points where f'(z) = 0 are called critical points.

Ordinary point : the points where f'(z) # 0 are called ordinary points.

Ex: Find the critical points of f(z) = z2
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Sol: f(z) =0

=2z=0

=2z=0

~ z = 0 is called critical points.

Ex 2: Find the critical points of f(z) = cosz

f'(z) = sinz
f(z2)=0
sinz=0

z=nm wWwheren=0,+1,42 — — — —

z = nm are called critical points of cosz

Examples for conformal mappings

lw=f(z) =e=

We know that f(z) = ez is analytic everywhere and f'(z) = ez # 0 Vz

=~ f(2) is conformal at every point

2.w = f(z) = z2 — z + 1 is conformal mapping because it is a polynomial.
3.w = f(z) = e?z — 2iz + 3 is conformal mapping.

Standard Transformations :

1. Translation
2. Expansion or Contraction
3. Inversion

1. Translation : the mapping w = z 4+ c where c is any complex constant, is called a translation.
Note : Circles are mapped onto circles under this transformation.

2.Expansion (or) contraction and rotation(Magnification) : The mapping w = cz is called
contraction and rotation (or ) expansion. Under this transformation, any figure in Z-plane is
transformed into, geometrically, a similar figure in the W-plane.

Note : if |c| = 1 then w = cz is called a pure rotation, since in this case there is no expansion
or contraction, but just a rotation through an angle of a.

Example
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Prove that circles are invariant under the linear transformation w = az + ¢ (or) prove that
circles are mapped to circles under w = az + c.

Sol: Given the linear transformation = az + c , where a & c are complex constants.
Consider the circle in Z-plane is A(x%2 + y2) + Bx + Cy + D = 0-------- (1)

We have transformation w = az + ¢

su+iv =alx+iy)+c1+ic

Comparing real and imaginary parts

=u=ax+c1,v=ay+cz

Substitute (2) in (1) then we get

K“% +€46]+Bﬁ45+6646+0—0

>AW+v)+Bu+Cv+D =0
Which is a circle in the W-plane.

Where A" = i ,B’ — B-24ci , C = C—2Ac2

a? a a

2
+
D’ —D+A(1 2y_Bace

a a

Therefore, circles are mapped on to the circles under the transformation w = az + c.

. . 1. . . .
3.Inversion : The mapping w = _is called inversion mapping.
zZ
. ; 1 . . . .
Example : the transformation w = _ maps every straight line or circle onto a circle or
z

straight line.

Proof : let A(x2+ y2) + Bx + Cy + D = 0 --------—-- (1) is a circle (or) straight line (if A=0)
in Z-plane.

Here A,B,C,D are real numbers.

If A=0, & B & C+ 0 (at least one) then equation (1) represents straight line.
If A # 0 then equation (1) represents straight line.

Wehave z=x+iyand z= x — iy

z.Z = x* + y?
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Substitute (2) in (1) then

zZ+Z zZ—2Z
> )+ C( 2i)+D=0

AzZ+ B (

Substitute w=- >z ="

z w

. 1,1 1_1
4 +B&H+cE—H+Dp=0

ww 2 20

Now multiply the above equation by ww

w+w w—w
> A+ B( 5 )+ C( T ) + Dww= 0
= A+ Bu—Cv+ D(u? + v?) = 0-------- (3)
Where=ﬂv=w___w,_uz+v2=w'w

2 2i

Equation (3) represents a circle in W-plane if D # 0
Equation (3) represents a straight line in W-plane if D = 0 and B & C # 0 (at least one)

Therefore general equation of circle or straight is transformed to general equation of straight
line or circle under the transformation w = <.

y f(z)=1/z
»—-""’__""'-».\\ V
- o
| X=-1/2
‘ ‘| X=1/2
\ | .
0 |
X
L :
|
\ \
X=-1/2 | X=1/2
Z-plane W-plane
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Some special conformal Transformations :

1. w=22 2. w=e? 3. w=logz
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Problems :

1.Find the points at which w = coshz is not conformal.
Sol : givenw = f(z) = coshz

f'(z) = sinhz

f(2)=0

sinhz =10

eZ — e—Z
2

=0
=>e2z—-1=0
= z = +nni wheren=0,+1,+2—————
Therefore critical points of f(z) are z = tnmi, n =0,+1,+2 — — — — —
Therefore f(z) is not conformal at z = +nmi.
2.Find the image of |z| = 2 under the transformation w = 3z.
Sol: given |z| =2

= |x+iy| =2

= Va2 +y2 =2

x* +y2 =4 which isa circle with center (0,0) & r=2.
It is required to find the image of circle |z| = 2 i.ex2 + y2 =4 -~ 1)
under the mapping w = 3z.
Letw=u+iv andz=x+ iy
Given transformation is w = 3z

u+iv=3x+iy)

Comparing real and imaginary parts then
u=3x &v =3y

x="andy="
3 3

Substitute x & y values in (1) then
u 2 v 2
@ +G =4

u? +v? =36
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Which is a circle in the W-plane with center at (0,0) & r=6.

W=f(z)=3z

; O

Z-plane W-plane

3.under the transformation w = * find the image of the circle |z — 2i| = 2.
z

1
Sol:w="_
VA
1
z=_
w
x+iy = u—t
u+iv u?+v2
u
x= =Y 1
u24v2 y u2+v?2 ( )
|z — 2i] = 2.

|x + iy — 2i| = 2.

X2+ (y—2)2 = 4 (2)
Which is a circle with center (0,2) and r = 2.
Substitute (1) in (2)

=>1+4v=0
-1

S>Spv=—0
V=%

Which is a straight line parallel to X-axis in the W-plane.

4.Find the image of the infinite strip 0 < y < ! under the transformation w = -
2

z
Sol: here it is required to find the image of infinite strip 0 < y < 12 in Z-plane under the map

1
w=_
z
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. . 1
Given transformation w = _

Z
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x+iy=_L -
u+iv u24p?2

Comparing real and imaginary parts

X = _ y = —v B ---(1)

u2+v? u?+v?

Givenstrip in Z-plane is 0 <y < !
2

Ify=0thenv =20 (from (1))
1
|fy=5 thenu2 + v2 + 2v = 0

u+w+1)2=1
Which is a circle with center (0,-1) & r=1

Therefore under the transformation w = L

z

The straight y = 0 is transformed to line v = 0 and

The straight y = L is transformed to a circle u? + v+1)2=1
2

. e . . 1
Hence the infinite strip 0 <y < > in Z-plane is mapped in to the region between line V=0

and the circle u2 + (v + 1)2 = 1 in W-plane under the transformation w = L

zZ

Z-plne W-plane

5.show that the image of the hyperbola x2 — y2 = 1 under the transformation w = Lis

z

the lemniscate p2 = cos20.

Sol: It is required to find the image of hyperbola x2 — y2 = 1 under the transformation w =
1

z

. . 1
given transformationw = _
z
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let z = reif

w = Rei®

Rei@ =

Rel® = l_e—ie
r

R='0=-6

T

Given hyperbolais x2 —y2 =1
r2c0s%0 — r2sin%0 = 1
r2(cos?20 — sin20) = 1
r2cos260 =1

Lcos(-20)=1 (p= i 0 = —0)
p? r

p% = cos2Q

Therefore hyperbola x2—y2=1 in the Z-plane is mapped in to lemniscates
p? = cos2@ in the W-plane.

6.Find and plot the image of the traingularregion with vertices at (0,0) (1,0)(0,1) under
the transformation w = (1 — i)z + 3.

Sol: Given transformationisw = (1 —i)z+ 3
ut+tiv=>0-Dkx+iy)+3

ut+iv=x+y+3)+i(y —x)

u=x+y+3andv=y—x 1)
When (x, y) = (0,0) then (u, v) = (3,0) in W-plane
When (x,y) = (1,0) then (u, v) = (4,—1) in W-plane

When (x,y) = (0,1) then (u, v) = (4,1) in W-plane
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f(z)rﬂli—i)_rz:l-B

i
v
+ (0,1) Q (41)
(1,0) X (3,0)"--“_-\_‘]'\ u
R (a-1)
Z-plane W-plane

7.Find and plot the rectangular region 0 < x < 2,0 < y < 2 under transformation w =

V2etz + (1 - 2i).

Sol: Given transformation is w = v2e+z + (1 — 2i)

T T
u+iv=12 (cosz + isinz) (x+iy)+ (1 - 20)

1

=\/2(ﬁ

+i%)(x+iy)+(1—2i)
=A+Dx+iy)+ (1 -20)
=x-y)+ilx+y)+ (1 -20)
utiv=x—-y+1D+ilx+y—-2)
u=x—y+landv=x+y—2-—-—-—-- (1) which is a given transformation

Under this transformation we have to find the image of rectangular region 0 < x < 2,0 <
y < 2 inZ-plane.

Putx=0in(l)thenu=—-y+1l,v=y—2=y=2+4+v
u=-2+v)+1=v=—-u-1

Putx=2in(1)thenu=2—-y,v=y—1=>v=1—-uPut

y=0in(1)thenu=x+1,v=x—2=>v=u—3Puty

=2in(Dthenu=x—-1l,v=x=>v=u+1

Thus the region is a rectangle bounded by the lines, v =—-u—-1=v=1-uv=u—3&

v=u+1

156




w = VZe*z+ (1L — 2i)

Z-plane W-plane

8.Find the image of the region in the Z-plane between the lines y = 0 & y = /2 under
the transformation w = ez.

Sol: Given transformation is w = ez

Letz = x + iy and w = Re®®

Rei? = extiy

Rei? = ex, ey

R=exand @ = y----- (1) which is a given transformation

If y = 0 then @ = 0 (fom (1)) represents radial line making an angle of zero radius with the
X-axis .

If y = /2 then @ = /2 represents radial line making angle of /2 radius with the X-axis.
As x increases from —oo to oo then R = e (i.e radius) increases from 0 to c
y = m/2 in Z-plane is mapped onto the ray @ = = /2 excluding origin in W-plane.

Hence the infinite strip bounded by the lines y = 0 and y = m/2 is mapped on to the upper
quadrant of W-plane.

|||
L]

v =m/2

wW-plane

Assignment questions :
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1
1.For the mapping w = _ ,Find the image of the family of circles x2 + y2 = ax where a is
VA

real.

_ 1
2.Show that the transformation W = _ maps a circle to a circle or to a straight line if the
A

former goes through the origin.

3.Find the image of the domain in the Z-plane to the left of the line x = —3 under
transformation w = z2.

4.Find and plot the image of the regions

i) x>1 ii)y > 0iii)0 < y < 1/2 under transformation w = 1/z.

BILINEAR TRANSFORMATION OR MOBIUS TRANSFORMATION
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az+

b where a,b,c,d € Cand ad — bc # 0
cz+d

is called bilinear transformation (or) linear fractional transformation or mobius
transformation.

Bilinear transformation : The map w = T(2) =

Note :The map w = ““* ——(1) where ad — bc # 0 is bilinear transformation

cz+d

=>wcz+wd=az+b

>wcz—az+dw—-b=0

= Azw+Bz+Cw+D =0 ----- (2)

Where A=c¢,B =—a,C =d,D =—-b

Note that AD — BC = c¢(—b) — (—a)d = ad — bc # 0

Equation (1) can be written in the form Azw + Bz+ Cw + D = 0and AD — BC # 0
Therefore the form Azw + Bz + Cw + D = 0 is also called bilinear transformation

i.e equations (1) and (2) represents bilinear transformation.

o s +b . .. .
< The necessary condition to say that w = % ---(1) is bilinear transformation is ad —
Z

bc # 0
% The bilinear transformation w = “** |, ad — bc # 0 is a bijective from ¢ to C .
cz+d ® ®
The inverse of a bilinear is also bilinear.

The composition of any two bilinear transformation is also bilinear.
The identity transformation I(z) = z is also bilinear

X/
o

X3

*¢

X/
o

Properties of Bilinear Transformation

1.A Bilinear transformation is conformal

Proof:Consider the bilinear transformation w = T(z) = azth

cz+d

Differentiate with respect to z

dW_T, _(cz+d)(@) —(az+b)c _ ad —bc
T (cz + d)? ~ ez + d)?

Since ad — bc # 0

d
%0
dz
az+b . .
>w=T(2) = is conformal transformation.
cz+d

Ifad — bc =0thendw. =0V z

dz
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Then we say that every point of z —plane is critical.

Note : Let the bilinear transformation w = “**”

cz+d
For different choices of constants a,b,c,d we get different bilinear transformation as
Q) w=z+b(fa=1.c=0,d = 1) (translation)
(i)  w=az+ b(if c = 0 &d = 1) (Linear translation)
(i) w=az(ifb=0,c=0,d =1) (Rotation)
. 1
(iv) w= - (ifa=0,b=1,c = 1,d = 0) (Inversion)

2.There is a one-one correspondence between all points in two planes.

Proof: Letw =22 (1) ad — bc # 0 be a conformal mapping
cz+d
—dw+b
From (1) z = ija -------- (2) is inverse mapping

Since ad — bc # 0 therefore equation (2) is also represents a bilinear transformation.

From (1) , it is clear that to each point in the Z-plane except z = “% there corresponds a
c

unique point in the W-plane.

Invariant or Fixed point : A point zo is said to be a fixed point of a bilinear transformation
w = T(z) if T(20) = zo.

Ex1l: Forthemap W =T(z) =z
Every point is a fixed point

Ex2: Forthe map W = !

the fixed point are obtained by T(z) = z
1
>—=z
Z
=2z2—-1=0
= z = +1 ,therefore z = +1 are fixed points

» Finding the Bilnear Transformation whose fixed point are a and Q are given by w =
z—aQ
z—(a+Q)+

Prop 3. Every bilinear transformation maps the totality of circles and straight lines in
Z-plane onto the totality of circles and straight lines the W-plane.
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Every bilinear transformation maps circles and straight lines into circles and straight

lines

a

b
“*° where ad — bc # 0
cz+d

Proof: Let the bilinear transformation w = T(z) =

(). lfc=0thenT(2) = (z+ () =Az+ Bwhere="B="
d d d d

Clearly T is linear.

We know that image of any region in the Z-plane under the linear transformation has the
same.

i.e the transformation w = T'(z) transforms circles & straight lines in to circles and straight
lines.

(i)  Ifc# 0then

T@) =0+ 1

d bc—ad

LetT (D) =z+".T@=".T (2= 2, T(2)="+z
1 2 ;3 4

c2 c

c

Therefore T(z) = T40T30T20T1
We know that (i) the inversion transformation maps circles and straight lines in to circles
and straight lines.

(i) The translation and rotation are linear transforms.

Therefore the transformation transforms circles and straight lines into circles and straight
lines.

Since every bilinear transformation is a composition of translation,rotation and inversion.
Hence bilinear transformation T (z) is a of translation,rotation and inversion.

Therefore bilinear transformation T'(z), circles and straight lines into circles and straight
lines.

Cross Ratio :

For three distinct points z1, z2, z3 in C» then the cross ratio of z, z1, z2, z3 is denoted
by
(z,z ,z ,z ) and defined by (z,z ,z ,z ) = (z=21)(z2=23)
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Prop4: The cross ratio is invariant under a bilinear transformation

(or)

A bilinear transformation preserves cross ratio property of four points.

az+b

Proof : Let the bilinear transformation w = T(z) = where ad — bc = 0 where

cz+d
a,b,c,d €C
Let T(zr) = wk for k = 1,2,3
It is required to prove that (z, z1, z2,z3) = (T(2),T(z1), T(z2),T(z3))
i.e (w, w1, waws) = (z, 21, 22,23)

noww — wk = T(z) — T(zr) where k = 1,2,3

_ aztb _ az+b

cz+d czp+d

(az+b)(czg+d)—(azy+b)(cz+d)

(cz+d)(czp+d)
_ (ad=bc)(z=z)
W=W = rd)(czitd)
(ad=bA)(zj=zj)
Wi

W ot (czrd)

Let the cross ratio of w, w1, wz,ws

(w —wi)(wz — w3)
(w, w1, w2ws) = (

wy; —wz) (w3 — w)

(ad — bc)(z — z1) (ad — bc)(z2 — z3)
_ (cz+ d)(cz1 +d) (czz + d)(cz3 + d)
~ (ad — bc)(z1 — z2) (ad — bc)(z3 — z1)
(cz1 + d)(czz + d) " (czz + d)(cz+ d)

— (z=21)(22=23)

(z1—21)(z3—2)

= (z, 71, 22,23)

Therefore (2, 21, 22,23) = (T(2),T(z1), T(z2), T(23))

Notel: To find the bilinear transformation = T'(z) , we can use the condition

w—wpw—w3) _ (z=2z1)(z2-23)

(wi—wz2)(w3—w)  (z1—22)(z3—2)
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az+b
cz+d

Note 2: To find the bilinear transformation we can also use the formula w =
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Note 3: o—i = 10gn_mn_—i =1 similarly 2= =1

o—w n—-w 00—
Note 4: == = —1 , »=l — _1

co—w wW—00
Problems:

1: Find the Bilinear transformation which maps the point (-1,0,1) in to the points (0,i,3i)
Soln: let z1=-1,22=0,z3=1
wi=-1Lw2=0wsz =1

w=w1)(w2=w3) _ (z=z1)(22—23)

we know that =
(wi—w2)(w3—w) (z1—22)(z3—2)

(w=0)(i—3i) — (z+1)(0-1)
(0—i)Bi—w) (-1-0)(1- Z)
( w)(@=3i) — (z+1)

(- i)(3Bi—w) 1-2)
(2w) — (z+1)
(Bi-w) 1-z)

(2w)A-2) =@Z+1D)@Bi—-w)
2w — 2wWZ =3iz—wz+3i—w
w[2=2z+z+ 1] = 3i[z+ 1]

w(—z+3) = 3i[z+1]

w = 3]
3—z
W = T(Z) — 3i[Z+1]
3—z

Which is the required bilinear transformation

2.Find the fixed points (Invariant points) of the transformation

: _ 2i-6z
0 w= iz—3

i) w=""1
z+1

Soln : The fixed point of transformations are obtained by w = z

i.e f(z)=z

2i—6z

) w = f(z =

iz—3

f@)=z
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2i—6z

iz—3
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2i — 6z = iz — 3z
iz2+ 3z— 20 =0

72 -3iz—-2=0

It is a quadratic equation

3i+ V9i2—4.1.(-2)
2

7 =
Z =12
Fixed points are i, 2i

3. find the bilinear transformations which maps Z = 0, —i, 2i in to

w = 5i,00,—i/3.
soln: let the bilinear transformation be w =" ____ (1)
cz+d
Given Z = 0,—i,2i & w = 5i,00,—i/3
sub above values in (1)
5|:J§ ; b =>5id------- (2)
—ZAtb .1 _aib 4 d =0---mm- (3)

—i =2ai+b - 2¢ —id = 6ia + 3b-------- 4
3 2citd

Solving (2) (3) & (4)fora,b,c,d
From (2) b = 5id

From(3) ¢ = —id

Sub b, c valuesin (4)

2(—id) - id =6ia +15id

a = —3d

Sub a, b, c in (1)

—3dz + 5id
w= —"—"—"F—"
—idz+d
_ —3z+5i
a —iz+1
Multiply & divide by i
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w

_ —(3iz+5)

z+1
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Prob4. Find the bilinear transformation that maps the points (oo, i,0) into the points
(0, i, ).

(w=w1)(w2—w3) — (z=2z1)(z2—23)

Sol: we know that
(wi—w2)(w3z—w) (z1—22)(z3—2)

W=0)(i=») _ (z2=)(i-0)
(0=)(co—w)  (00=0)(0~2)

w=—=
z

Prob 5. Show that transformation w = “— maps the real axis in the Z-plane in to the
z+i

unit circle |w| = 1 in the W-plane.

Sol:Given transformation is w = “_*
z+i

Unit circle in w-plane is |w| = 1

z—i
I~ 1=1
zZ+i

|z —i| = |z + i

X +i(y =Dl = lx + iy + D)
X2+ ({y—1D2=x24+(y+ 1)2
X2+y2—-2y+1=x2+y2+2y+1
4y =20

y = 0 which is a real axis in Z-plane.

Prob6. Show that the transformation w = “_* transforms |lw| < 1 into upper half plane
z+i

(i.e img(z)>0)

Sol: consider the transformation w = “_*
z+i
_ z+i
w= —
Z—1
Wi 1 = z—i Z+i 1

(24D (z—0)—(z+D) (Z—0)
- (z—0)(z+i)

_ 2i(z—2)

|z+i|2
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Given lw| <1

if lw| =1then |w|?=1=y =0 (form (1)) which is a real axis in Z-plane.
therefore circle |[w| = 1 in W-plane transformed straight line y = 0 in Z-plane.
If [w| < 1theny > 0 (form (1))

i.e img(z)>0

i.e Upper half of Z-plane.

Hence |w| < 1 is transformed into upper half plane (i.e img(z)>0 ) unde

transformation w = *—,
Z+1

. 5—4z
Prob7. Show that the relation w = —, transforms the circle |z| = 1 into a circle of

radius unity in the W-plane.

. . . 5—47 —cmmemmee
Sol: Given transformation isw = 2_"~

4z—2
solving (1) for z

_ 5+2w
4(w+1)

lz| =1

542w
Lo =1
(w+1)

|5+ 2w| = |[4(w+ 1)|
w=u+liv
|5+ 2u + 2iv| = |4u + 4iv + 1|

(5 + 2u) + 2iv| = |(Au+ 1) + 4iv|

V(5 + 2u)? + 412 = V(4u + 1)2 + 1612

uz+v2+u—->=0
4

it is the circle with center € = (—=1/2,0) and r = 1 in W-plane.

The Image of a circle |z| = 1 in Z-plane is a circle u? + v + u — 3=0in W-plane under

4
. 5—4
the transformation w = 2_"~.

4z—-2
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